-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathmake_ShanghaiTech.py
257 lines (195 loc) · 8.94 KB
/
make_ShanghaiTech.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import os
import cv2
import glob
import h5py
import scipy
import pickle
import numpy as np
from PIL import Image
import scipy.io as io
from itertools import islice
from tqdm import tqdm
from matplotlib import pyplot as plt
from sortedcontainers import SortedDict
from scipy.ndimage.filters import gaussian_filter
def get_img_pathes(path_sets):
"""
Return all images from all pathes in 'path_sets'
"""
img_pathes = []
for path in path_sets:
for img_path in glob.glob(os.path.join(path, '*.jpg')):
img_pathes.append(img_path)
return img_pathes
def save_computed_density(density_map, out_path):
"""
Save density map to h5py format
"""
with h5py.File(out_path, 'w') as hf:
hf['density'] = density_map
def compute_sigma(gt_count, distance=None, min_sigma=1, method=1, fixed_sigma=15):
"""
Compute sigma for gaussian kernel with different methods :
* method = 1 : sigma = (sum of distance to 3 nearest neighbors) / 10
* method = 2 : sigma = distance to nearest neighbor
* method = 3 : sigma = fixed value
** if sigma lower than threshold 'min_sigma', then 'min_sigma' will be used
** in case of one point on the image sigma = 'fixed_sigma'
"""
if gt_count > 1 and distance is not None:
if method == 1:
sigma = np.mean(distance[1:4])*0.1
elif method == 2:
sigma = distance[1]
elif method == 3:
sigma = fixed_sigma
else:
sigma = fixed_sigma
if sigma < min_sigma:
sigma = min_sigma
return sigma
def find_closest_key(sorted_dict, key):
"""
Find closest key in sorted_dict to 'key'
"""
keys = list(islice(sorted_dict.irange(minimum=key), 1))
keys.extend(islice(sorted_dict.irange(maximum=key, reverse=True), 1))
return min(keys, key=lambda k: abs(key - k))
def gaussian_filter_density(non_zero_points, map_h, map_w, distances=None, kernels_dict=None, min_sigma=2, method=1, const_sigma=15):
"""
Fast gaussian filter implementation : using precomputed distances and kernels
"""
gt_count = non_zero_points.shape[0]
density_map = np.zeros((map_h, map_w), dtype=np.float32)
for i in range(gt_count):
point_y, point_x = non_zero_points[i]
sigma = compute_sigma(gt_count, distances[i], min_sigma=min_sigma, method=method, fixed_sigma=const_sigma)
closest_sigma = find_closest_key(kernels_dict, sigma)
kernel = kernels_dict[closest_sigma]
full_kernel_size = kernel.shape[0]
kernel_size = full_kernel_size // 2
min_img_x = max(0, point_x-kernel_size)
min_img_y = max(0, point_y-kernel_size)
max_img_x = min(point_x+kernel_size+1, map_h - 1)
max_img_y = min(point_y+kernel_size+1, map_w - 1)
kernel_x_min = kernel_size - point_x if point_x <= kernel_size else 0
kernel_y_min = kernel_size - point_y if point_y <= kernel_size else 0
kernel_x_max = kernel_x_min + max_img_x - min_img_x
kernel_y_max = kernel_y_min + max_img_y - min_img_y
density_map[min_img_x:max_img_x, min_img_y:max_img_y] += kernel[kernel_x_min:kernel_x_max, kernel_y_min:kernel_y_max]
return density_map
def get_gt_dots(mat_path, img_height, img_width):
"""
Load Matlab file with ground truth labels and save it to numpy array.
** cliping is needed to prevent going out of the array
"""
mat = io.loadmat(mat_path)
gt = mat["image_info"][0,0][0,0][0].astype(np.float32).round().astype(int)
gt[:,0] = gt[:,0].clip(0, img_width - 1)
gt[:,1] = gt[:,1].clip(0, img_height - 1)
return gt
def set_circles_on_img(image, bbox_list, circle_size=2):
"""
Set circles on images at centers of bboxes in bbox_list
"""
for bbox in bbox_list:
cv2.circle(image, (bbox[0], bbox[1]), circle_size, (255, 0, 0), -1)
return image
def generate_gaussian_kernels(out_kernels_path='gaussian_kernels.pkl', round_decimals = 3, sigma_threshold = 4, sigma_min=0, sigma_max=20, num_sigmas=801):
"""
Computing gaussian filter kernel for sigmas in linspace(sigma_min, sigma_max, num_sigmas) and saving
them to dict.
"""
kernels_dict = dict()
sigma_space = np.linspace(sigma_min, sigma_max, num_sigmas)
for sigma in tqdm(sigma_space):
sigma = np.round(sigma, decimals=round_decimals)
kernel_size = np.ceil(sigma*sigma_threshold).astype(np.int)
img_shape = (kernel_size*2+1, kernel_size*2+1)
img_center = (img_shape[0]//2, img_shape[1]//2)
arr = np.zeros(img_shape)
arr[img_center] = 1
arr = scipy.ndimage.filters.gaussian_filter(arr, sigma, mode='constant')
kernel = arr / arr.sum()
kernels_dict[sigma] = kernel
print(f'Computed {len(sigma_space)} gaussian kernels. Saving them to {out_kernels_path}')
with open(out_kernels_path, 'wb') as f:
pickle.dump(kernels_dict, f)
def compute_distances(out_dist_path='distances_dict.pkl', Shanghai_root_path='./', n_neighbors = 4, leafsize=1024):
distances_dict = dict()
full_img_pathes = glob.glob(f'{Shanghai_root_path}*/*/images/*.jpg')
for full_img_path in tqdm(full_img_pathes):
mat_path = full_img_path.replace('.jpg','.mat').replace('images','ground-truth').replace('IMG_','GT_IMG_')
img = plt.imread(full_img_path)
non_zero_points = get_gt_dots(mat_path, *img.shape[0:2])
tree = scipy.spatial.KDTree(non_zero_points.copy(), leafsize=leafsize) # build kdtree
distances, _ = tree.query(non_zero_points, k=n_neighbors) # query kdtree
distances_dict[full_img_path] = distances
print(f'Distances computed for {len(full_img_pathes)}. Saving them to {out_dist_path}')
with open(out_dist_path, 'wb') as f:
pickle.dump(distances_dict, f)
precomputed_kernels_path = 'gaussian_kernels.pkl'
# uncomment to generate and save dict with kernel sizes
generate_gaussian_kernels(precomputed_kernels_path, round_decimals=3, sigma_threshold=4, sigma_min=0, sigma_max=20, num_sigmas=801)
with open(precomputed_kernels_path, 'rb') as f:
kernels_dict = pickle.load(f)
kernels_dict = SortedDict(kernels_dict)
precomputed_distances_path = 'distances_dict.pkl'
# uncomment to generate and save dict with distances
compute_distances(out_dist_path=precomputed_distances_path, Shanghai_root_path='/home/vladislav.leketush/ssd_data/Crowd_data/ShanghaiTech/ShanghaiTech/')
with open(precomputed_distances_path, 'rb') as f:
distances_dict = pickle.load(f)
# generate GT for part A
data_root = '/home/vladislav.leketush/ssd_data/Crowd_data/ShanghaiTech/ShanghaiTech/part_A/'
img_pathes = glob.glob(f'{data_root}*/images/*.jpg')
map_out_folder = 'maps_adaptive_kernel/'
min_sigma = 2 ## can be set 0
method = 1
for full_img_path in tqdm(img_pathes):
data_folder, img_path = full_img_path.split('images')
mat_path = full_img_path.replace('.jpg','.mat').replace('images','ground-truth').replace('IMG_','GT_IMG_')
# load img and map
img = Image.open(full_img_path)
width, height = img.size
gt_points = get_gt_dots(mat_path, height, width)
distances = distances_dict[full_img_path]
density_map = gaussian_filter_density(gt_points, height, width, distances, kernels_dict, min_sigma=min_sigma, method=method)
curr_map_out_folder = data_folder + map_out_folder
gt_out_path = curr_map_out_folder + img_path.strip('/').replace('.jpg', '.h5')
# #plt.imshow(img)
# plt.imshow(density_map, alpha=1)
# plt.show()
# break
if not os.path.isdir(curr_map_out_folder):
print('creating ' + curr_map_out_folder)
os.makedirs(curr_map_out_folder)
save_computed_density(density_map, gt_out_path)
# generate GT for part B
data_root = '/home/vladislav.leketush/ssd_data/Crowd_data/ShanghaiTech/ShanghaiTech/part_B/'
img_pathes = glob.glob(f'{data_root}*/images/*.jpg')
map_out_folder = 'maps_fixed_kernel/'
min_sigma = 2
method = 3
const_sigma=15
for full_img_path in tqdm(img_pathes):
data_folder, img_path = full_img_path.split('images')
mat_path = full_img_path.replace('.jpg','.mat').replace('images','ground-truth').replace('IMG_','GT_IMG_')
# load img and map
img = Image.open(full_img_path)
width, height = img.size
gt_points = get_gt_dots(mat_path, height, width)
distances = distances_dict[full_img_path]
density_map = gaussian_filter_density(gt_points, height, width, distances, kernels_dict, min_sigma=min_sigma, method=method,const_sigma=const_sigma)
curr_map_out_folder = data_folder + map_out_folder
gt_out_path = curr_map_out_folder + img_path.strip('/').replace('.jpg', '.h5')
# #plt.imshow(img)
# plt.imshow(density_map, alpha=1)
# plt.show()
# break
if not os.path.isdir(curr_map_out_folder):
print('creating ' + curr_map_out_folder)
os.makedirs(curr_map_out_folder)
save_computed_density(density_map, gt_out_path)
plt.imshow(img)
plt.imshow(density_map, alpha=0.75)
plt.show()