forked from val-iisc/lsc-cnn
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathutils_nms.py
152 lines (116 loc) · 4.46 KB
/
utils_nms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
"""
apply_nms.py: Wrapper for nms.py
Authors : svp
"""
import numpy as np
'''
nms.py: CPU implementation of non maximal supression modified from Ross's code.
Authors : svp
Modified from https://github.com/rbgirshick/fast-rcnn/blob/master/lib/utils/nms.py
to accommodate a corner case which handles one box lying completely inside another.
'''
def nms(dets, thresh):
x1 = dets[:, 0]
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3]
scores = dets[:, 4]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
remove_index_1 = np.where(areas[i] == inter)
remove_index_2 = np.where(areas[order[1:]] == inter)
ovr = inter / (areas[i] + areas[order[1:]] - inter)
ovr[remove_index_1] = 1.0
ovr[remove_index_2] = 1.0
inds = np.where(ovr <= thresh)[0]
order = order[inds + 1]
return keep
'''
Extracts confidence map and box map from N (N=4 here)
channel input.
Parameters:
-----------
confidence_map - (list) list of confidences for N channels
hmap - (list) list of box values for N channels
Returns
-------
nms_conf_map - (HXW) single channel confidence score map
nms_conf_box - (HXW) single channel box map.
'''
def extract_conf_points(confidence_map, hmap):
nms_conf_map = np.zeros_like(confidence_map[0])
nms_conf_box = np.zeros_like(confidence_map[0])
idx_1 = np.where(np.logical_and(confidence_map[0] > 0, confidence_map[1] <= 0))
idx_2 = np.where(np.logical_and(confidence_map[0] <= 0, confidence_map[1] > 0))
idx_common = np.where(np.logical_and(confidence_map[0] > 0, confidence_map[1] > 0))
nms_conf_map[idx_1] = confidence_map[0][idx_1]
nms_conf_map[idx_2] = confidence_map[1][idx_2]
nms_conf_box[idx_1] = hmap[0][idx_1]
nms_conf_box[idx_2] = hmap[1][idx_2]
for ii in range(len(idx_common[0])):
x, y = idx_common[0][ii], idx_common[1][ii]
if confidence_map[0][x, y] > confidence_map[1][x, y]:
nms_conf_map[x, y] = confidence_map[0][x, y]
nms_conf_box[x, y] = hmap[0][x, y]
else:
nms_conf_map[x, y] = confidence_map[1][x, y]
nms_conf_box[x, y] = hmap[1][x, y]
assert (np.sum(nms_conf_map > 0) == len(idx_1[0]) + len(idx_2[0]) + len(idx_common[0]))
return nms_conf_map, nms_conf_box
'''
Wrapper function to perform NMS
Parameters:
-----------
confidence_map - (list) list of confidences for N channels
hmap - (list) list of box values for N channels
wmap - (list) list of box values for N channels
dotmap_pred_downscale -(int) prediction scale
thresh - (float) Threshold for NMS.
Returns
-------
x, y - (list) list of x-coordinates and y-coordinates to keep
after NMS.
h, w - (list) list of height and width of the corresponding x, y
points.
scores - (list) list of confidence for h and w at (x, y) point.
'''
def apply_nms(confidence_map, hmap, wmap, dotmap_pred_downscale=2, thresh=0.3):
nms_conf_map, nms_conf_box = extract_conf_points([confidence_map[0], confidence_map[1]], [hmap[0], hmap[1]])
nms_conf_map, nms_conf_box = extract_conf_points([confidence_map[2], nms_conf_map], [hmap[2], nms_conf_box])
nms_conf_map, nms_conf_box = extract_conf_points([confidence_map[3], nms_conf_map], [hmap[3], nms_conf_box])
confidence_map = nms_conf_map
hmap = nms_conf_box
wmap = nms_conf_box
confidence_map = np.squeeze(confidence_map)
hmap = np.squeeze(hmap)
wmap = np.squeeze(wmap)
dets_idx = np.where(confidence_map > 0)
y, x = dets_idx[-2], dets_idx[-1]
h, w = hmap[dets_idx], wmap[dets_idx]
x1 = x - w / 2
x2 = x + w / 2
y1 = y - h / 2
y2 = y + h / 2
scores = confidence_map[dets_idx]
dets = np.stack([np.array(x1), np.array(y1), np.array(x2), np.array(y2), np.array(scores)], axis=1)
# List of indices to keep
keep = nms(dets, thresh)
y, x = dets_idx[-2], dets_idx[-1]
h, w = hmap[dets_idx], wmap[dets_idx]
x = x[keep]
y = y[keep]
h = h[keep]
w = w[keep]
scores = scores[keep]
return x, y, h, w, scores