-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathAE_brain.py
334 lines (296 loc) · 15.5 KB
/
AE_brain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
"""
View more, visit my tutorial page: https://morvanzhou.github.io/tutorials/
My Youtube Channel: https://www.youtube.com/user/MorvanZhou
Dependencies:
torch: 0.1.11
matplotlib
numpy
"""
import torch
import torch.nn as nn
from torch.nn import init
from torch.autograd import Variable
import torch.utils.data as Data
import numpy as np
import copy
import cPickle as pickle
import argparse
from ranking import *
torch.manual_seed(1) # reproducible
def evaluation(ep, text, image, sound, autoencoder, vocab, args):
testfile = ['men-3k.txt', 'simlex-999.txt', 'semsim.txt', 'vissim.txt', 'simverb-3500.txt',
'wordsim353.txt', 'wordrel353.txt', 'association.dev.txt', 'association.dev.b.txt']
_, _, _, _, multi_rep = autoencoder(text, image, sound)
word_vecs = multi_rep.data.cpu().numpy()
#torch.save(autoencoder.state_dict(), open(args.outmodel + '.parameters-' + str(ep), 'wb'))
#outfile = open(args.outmodel + '-' + str(ep)+ '.rep.txt', 'w')
# outfile = open(args.outmodel+'.rep.txt', 'w')
# #pickle.dump(word_vecs, outfile, protocol=2)
# for ind, w in enumerate(word_vecs):
# outfile.write(vocab[ind] + ' ' + ' '.join([str(i) for i in w]) + '\n')
for file in testfile:
manual_dict, auto_dict = ({}, {})
not_found, total_size = (0, 0)
for line in open('evaluation/' + file, 'r'):
line = line.strip().lower()
word1, word2, val = line.split()
if word1 in vocab and word2 in vocab:
manual_dict[(word1, word2)] = float(val)
auto_dict[(word1, word2)] = cosine_sim(word_vecs[vocab.index(word1)],
word_vecs[vocab.index(word2)])
else:
not_found += 1
total_size += 1
sp = spearmans_rho(assign_ranks(manual_dict), assign_ranks(auto_dict))
print file,
print "%15s" % str(total_size), "%15s" % str(not_found),
print "%15.4f" % sp
print ''
class AutoEncoder(nn.Module):
def __init__(self, args, model_para):
super(AutoEncoder, self).__init__()
self.tdim = args.text_dim
self.tdim1 = args.text_dim1
self.tdim2 = args.text_dim2
self.idim = args.image_dim
self.idim1 = args.image_dim1
self.idim2 = args.image_dim2
self.sdim = args.sound_dim
self.sdim1 = args.sound_dim1
self.sdim2 = args.sound_dim2
self.zdim = args.multi_dim
self.brain_dim1 = args.brain_dim1
self.brain_dim = args.brain_dim
self.model_para = model_para
self.encoder1 = nn.Sequential(
nn.Linear(self.tdim, self.tdim1),
nn.Tanh(),
nn.Linear(self.tdim1, self.tdim2),
nn.Tanh()
)
self.encoder2 = nn.Sequential(
nn.Linear(self.idim, self.idim1),
nn.Tanh(),
nn.Linear(self.idim1, self.idim2),
nn.Tanh()
)
self.encoder3 = nn.Sequential(
nn.Linear(self.sdim, self.sdim1),
nn.Tanh(),
nn.Linear(self.sdim1, self.sdim2),
nn.Tanh()
)
self.encoder4 = nn.Sequential(
nn.Linear(self.tdim2 + self.idim2 + self.sdim2, self.zdim),
nn.Tanh()
)
self.decoder4 = nn.Sequential(
nn.Linear(self.zdim, self.tdim2 + self.idim2 + self.sdim2),
nn.Tanh()
)
self.decoder3 = nn.Sequential(
nn.Linear(self.tdim2, self.tdim1),
nn.Tanh(),
nn.Linear(self.tdim1, self.tdim),
nn.Tanh()
)
self.decoder2 = nn.Sequential(
nn.Linear(self.idim2, self.idim1),
nn.Tanh(),
nn.Linear(self.idim1, self.idim),
nn.Tanh()
)
self.decoder1 = nn.Sequential(
nn.Linear(self.sdim2, self.sdim1),
nn.Tanh(),
nn.Linear(self.sdim1, self.sdim),
nn.Tanh()
)
self.decoder_brain = nn.Sequential(
nn.Linear(self.zdim, self.brain_dim1),
nn.Tanh(),
nn.Linear(self.brain_dim1, self.brain_dim),
nn.Sigmoid()
)
self.reset_parameters()
self.load_parameters()
def reset_parameters(self):
init.kaiming_normal(self.decoder_brain[0].weight.data)
init.kaiming_normal(self.decoder_brain[2].weight.data)
init.constant(self.decoder_brain[0].bias.data, val=0)
init.constant(self.decoder_brain[2].bias.data, val=0)
def load_parameters(self):
self.encoder1[0].weight.data = copy.deepcopy(self.model_para['encoder1.0.weight'])
self.encoder1[2].weight.data = copy.deepcopy(self.model_para['encoder1.2.weight'])
self.encoder1[0].bias.data = copy.deepcopy(self.model_para['encoder1.0.bias'])
self.encoder1[2].bias.data = copy.deepcopy(self.model_para['encoder1.2.bias'])
self.encoder2[0].weight.data = copy.deepcopy(self.model_para['encoder2.0.weight'])
self.encoder2[2].weight.data = copy.deepcopy(self.model_para['encoder2.2.weight'])
self.encoder2[0].bias.data = copy.deepcopy(self.model_para['encoder2.0.bias'])
self.encoder2[2].bias.data = copy.deepcopy(self.model_para['encoder2.2.bias'])
self.encoder3[0].weight.data = copy.deepcopy(self.model_para['encoder3.0.weight'])
self.encoder3[2].weight.data = copy.deepcopy(self.model_para['encoder3.2.weight'])
self.encoder3[0].bias.data = copy.deepcopy(self.model_para['encoder3.0.bias'])
self.encoder3[2].bias.data = copy.deepcopy(self.model_para['encoder3.2.bias'])
self.encoder4[0].weight.data = copy.deepcopy(self.model_para['encoder4.0.weight'])
self.encoder4[0].bias.data = copy.deepcopy(self.model_para['encoder4.0.bias'])
self.decoder1[0].weight.data = copy.deepcopy(self.model_para['decoder1.0.weight'])
self.decoder1[2].weight.data = copy.deepcopy(self.model_para['decoder1.2.weight'])
self.decoder1[0].bias.data = copy.deepcopy(self.model_para['decoder1.0.bias'])
self.decoder1[2].bias.data = copy.deepcopy(self.model_para['decoder1.2.bias'])
self.decoder2[0].weight.data = copy.deepcopy(self.model_para['decoder2.0.weight'])
self.decoder2[2].weight.data = copy.deepcopy(self.model_para['decoder2.2.weight'])
self.decoder2[0].bias.data = copy.deepcopy(self.model_para['decoder2.0.bias'])
self.decoder2[2].bias.data = copy.deepcopy(self.model_para['decoder2.2.bias'])
self.decoder3[0].weight.data = copy.deepcopy(self.model_para['decoder3.0.weight'])
self.decoder3[2].weight.data = copy.deepcopy(self.model_para['decoder3.2.weight'])
self.decoder3[0].bias.data = copy.deepcopy(self.model_para['decoder3.0.bias'])
self.decoder3[2].bias.data = copy.deepcopy(self.model_para['decoder3.2.bias'])
self.decoder4[0].weight.data = copy.deepcopy(self.model_para['decoder4.0.weight'])
self.decoder4[0].bias.data = copy.deepcopy(self.model_para['decoder4.0.bias'])
def forward(self, x_t, x_i, x_s):
encoded_text = self.encoder1(x_t)
encoded_image = self.encoder2(x_i)
encoded_sound = self.encoder3(x_s)
encoded_mid = self.encoder4(torch.cat((encoded_text, encoded_image, encoded_sound), dim=1))
decoded_mid = self.decoder4(encoded_mid)
decoded_text = self.decoder3(decoded_mid[:, 0:self.tdim2])
decoded_image = self.decoder2(decoded_mid[:, self.tdim2:self.tdim2 + self.idim2])
decoded_sound = self.decoder1(decoded_mid[:, self.tdim2 + self.idim2:])
decoded_brain = self.decoder_brain(encoded_mid)
return decoded_text, decoded_image, decoded_brain, decoded_sound, encoded_mid
if __name__ == '__main__':
parser = argparse.ArgumentParser(fromfile_prefix_chars='@')
parser.add_argument('--total-data', required=True)
parser.add_argument('--train-data', required=True)
parser.add_argument('--brain-data', required=True)
parser.add_argument('--text-dim', required=True, type=int)
parser.add_argument('--image-dim', required=True, type=int)
parser.add_argument('--sound-dim', required=True, type=int)
parser.add_argument('--text-dim1', required=True, type=int)
parser.add_argument('--text-dim2', required=True, type=int)
parser.add_argument('--image-dim1', required=True, type=int)
parser.add_argument('--image-dim2', required=True, type=int)
parser.add_argument('--sound-dim1', required=True, type=int)
parser.add_argument('--sound-dim2', required=True, type=int)
parser.add_argument('--brain-dim1', required=True, type=int)
parser.add_argument('--brain-dim', required=True, type=int)
parser.add_argument('--multi-dim', required=True, type=int)
parser.add_argument('--batch-size', required=True, type=int)
parser.add_argument('--epoch', required=True, type=int)
parser.add_argument('--lr', default=0.005, type=float)
parser.add_argument('--load-model', required=True)
parser.add_argument('--outmodel', required=True)
parser.add_argument('--regularization', default=-1, type=float)
parser.add_argument('--gpu', default=-1, type=int)
args = parser.parse_args()
# total_data
vocab = []
total_text = []
total_image = []
total_sound = []
num = 0
for line in open(args.total_data):
line = line.strip().split()
total_text.append(np.array([float(i) for i in line[1:args.text_dim + 1]])) # (9405, 300)
total_image.append(np.array([float(i) for i in line[args.text_dim + 1:args.text_dim + args.image_dim + 1]])) # (9405, 128)
total_sound.append(np.array([float(i) for i in line[args.text_dim + args.image_dim + 1:]])) # (9405, 128)
vocab.append(line[0])
num += 1
total_text = torch.from_numpy(np.array(total_text)).type(torch.FloatTensor)
total_image = torch.from_numpy(np.array(total_image)).type(torch.FloatTensor)
total_sound = torch.from_numpy(np.array(total_sound)).type(torch.FloatTensor)
# training dataset
indata = open(args.train_data) # 300*128
text = []
image = []
sound = []
for line in indata:
line = line.strip().split()
text.append(np.array([float(i) for i in line[1:args.text_dim + 1]])) # (9405, 300)
image.append(np.array([float(i) for i in line[args.text_dim + 1:args.text_dim + args.image_dim + 1]])) # (9405, 128)
sound.append(np.array([float(i) for i in line[args.text_dim + args.image_dim + 1:]])) # (9405, 128)
text = torch.from_numpy(np.array(text)).type(torch.FloatTensor)
image = torch.from_numpy(np.array(image)).type(torch.FloatTensor)
sound = torch.from_numpy(np.array(sound)).type(torch.FloatTensor)
train_ind = range(len(image))
indata = open(args.brain_data) # 300*128
brain_multi = []
for line in indata:
line = line.strip().split()
brain_multi.append(np.array([float(i) for i in line[1:]]))
brain_multi = torch.from_numpy(np.array(brain_multi)).type(torch.FloatTensor)
model_para = torch.load(open(args.load_model, 'rb'))
# Data Loader for easy mini-batch return in training
if args.gpu > -1:
train_loader = Data.DataLoader(dataset=train_ind, batch_size=args.batch_size, shuffle=True, pin_memory=True)
autoencoder = AutoEncoder(args, model_para).cuda(args.gpu)
else:
train_loader = Data.DataLoader(dataset=train_ind, batch_size=args.batch_size, shuffle=True)
autoencoder = AutoEncoder(args, model_para)
if args.gpu > -1:
total_text = Variable(total_text.cuda(args.gpu))
total_image = Variable(total_image.cuda(args.gpu))
total_sound = Variable(total_sound.cuda(args.gpu))
else:
total_text = Variable(total_text)
total_image = Variable(total_image)
total_sound = Variable(total_sound)
optimizer = torch.optim.Adam(autoencoder.decoder_brain.parameters(), lr=args.lr)
loss_func = nn.MSELoss()
for ep in range(50):
ep += 1
for step, ind in enumerate(train_loader):
if args.gpu > -1:
batch_text = Variable(text[ind].view(-1, args.text_dim).cuda(args.gpu)) # batch x, shape (batch, 300)
batch_image = Variable(image[ind].view(-1, args.image_dim).cuda(args.gpu)) # batch y, shape (batch, 128)
batch_sound = Variable(
sound[ind].view(-1, args.sound_dim).cuda(args.gpu)) # batch y, shape (batch, 128)
batch_brain = Variable(
brain_multi[ind].cuda(args.gpu)) # batch x, shape (batch, 300)
else:
batch_text = Variable(text[ind].view(-1, args.text_dim)) # batch x, shape (batch, 300)
batch_image = Variable(image[ind].view(-1, args.image_dim)) # batch y, shape (batch, 128)
batch_sound = Variable(sound[ind].view(-1, args.sound_dim)) # batch y, shape (batch, 128)
batch_brain = Variable(brain_multi[ind])
decoded_text, decoded_image, decoded_brain, decoded_sound, _ = autoencoder(batch_text, batch_image, batch_sound)
#loss = loss_func(decoded_text, batch_text) + loss_func(decoded_image, batch_image) + loss_func(decoded_brain, batch_brain) # mean square error
loss = loss_func(decoded_brain, batch_brain)
optimizer.zero_grad() # clear gradients for this training step
loss.backward() # backpropagation, compute gradients
optimizer.step() # apply gradients
if step % 100 == 0:
print 'Epoch: ', ep, '| train loss: %.4f' % loss.data[0]
#
# if ep % 50 == 0:
# evaluation(ep, total_text, total_image, autoencoder, vocab, args)
#fine-tune
optimizer = torch.optim.Adam(autoencoder.parameters(), lr=0.1*args.lr)
loss_func = nn.MSELoss()
for ep in range(args.epoch):
ep += 1
for step, ind in enumerate(train_loader):
if args.gpu > -1:
batch_text = Variable(text[ind].view(-1, args.text_dim).cuda(args.gpu)) # batch x, shape (batch, 300)
batch_image = Variable(
image[ind].view(-1, args.image_dim).cuda(args.gpu)) # batch y, shape (batch, 128)
batch_sound = Variable(
sound[ind].view(-1, args.sound_dim).cuda(args.gpu)) # batch y, shape (batch, 128)
batch_brain = Variable(
brain_multi[ind].cuda(args.gpu)) # batch x, shape (batch, 300)
else:
batch_text = Variable(text[ind].view(-1, args.text_dim)) # batch x, shape (batch, 300)
batch_image = Variable(image[ind].view(-1, args.image_dim)) # batch y, shape (batch, 128)
batch_sound = Variable(sound[ind].view(-1, args.sound_dim)) # batch y, shape (batch, 128)
batch_brain = Variable(brain_multi[ind])
decoded_text, decoded_image, decoded_brain, decoded_sound, _ = autoencoder(batch_text, batch_image,
batch_sound)
# loss = loss_func(decoded_text, batch_text) + loss_func(decoded_image, batch_image) + loss_func(decoded_brain, batch_brain) # mean square error
loss = loss_func(decoded_brain, batch_brain)
optimizer.zero_grad() # clear gradients for this training step
loss.backward() # backpropagation, compute gradients
optimizer.step() # apply gradients
if step % 100 == 0:
print 'Epoch: ', ep, '| train loss: %.4f' % loss.data[0]
if ep % 50 == 0:
evaluation(ep, total_text, total_image, total_sound, autoencoder, vocab, args)