-
Notifications
You must be signed in to change notification settings - Fork 72
/
geobase.py
385 lines (337 loc) · 14.9 KB
/
geobase.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
from __future__ import print_function
"""
Defines GeobaseReader, which reads geobase (a geography database from Ray
Mooney's group at UT Austin) from a Prolog file and parses it into a set of
triples, each consisting of:
- the relation name, one of 17 described below
- the source (or subject), an entity id such as '/state/nevada'
- the destination (or object), an entity id or a numeric value
An entity id resembles a Unix pathname. The first segment indicates the
entity's type, while the rest is an identifier based on the entity's ordinary
name. There are eight types, or unary relations, listed here by number of
instances:
386 city
102 place
51 state
50 mountain
46 river
40 road
22 lake
1 country
698 TOTAL
Note that 'place' is the type used for places identified by geobase as the
highest or lowest point in a state. Highest points are typically mountains;
lowest points are often rivers or lakes. Consequently, entity ids may not be
unique identifiers of entities. For example, we have both '/mountain/mckinley'
and '/place/mount_mckinley', and '/lake/erie' and '/place/lake_erie'.
There are 14 ordinary binary relations, which contain the primary geographical
content of geobase.
742 contains # state to city or mountain, or country to state
'/state/alaska' => '/city/anchorage_ak'
438 population # city, state, or country to integer
'/state/nevada' => 800500
436 borders # state to state, with symmetry
'/state/nevada' <=> '/state/utah'
367 traverses # river, road, or lake to state
'/road/15' => '/state/nevada'
152 height # mountain to height in meters,
or high-low place to elevation in meters
74 area # state, country, or lake to area in square meters
'/state/nevada' => 286193686192.128
51 abbreviation # state to two-letter abbrevation
'/state/nevada' => 'nv'
51 capital # state to capital city
'/state/oregon' => '/city/salem_or'
51 highest_elevation # state to highest elevation in meters
'/state/illinois' => 376
51 highest_point # state to place
'/state/illinois' => '/place/charles_mound'
51 lowest_elevation # state to lowest elevation in meters
'/state/illinois' => 85
51 lowest_point # state to place
'/state/illinois' => '/place/mississippi_river'
51 state_number # state to integer
'/state/nevada' => 36
46 length # river to length in meters
'/river/snake' => 1670000
Note that the source file geobase.pl is not consistent about units, but here we
convert everything to SI (metric) units.
There is also one special binary relation, which records the mapping between
names and ids.
698 name # from entity id to ordinary name: '/city/reno_nv' => 'reno'
The Prolog file defining geobase can be obtained from
ftp://ftp.cs.utexas.edu/pub/mooney/nl-ilp-data/geosystem/geobase
Here we assume it can be read from the local directory as geobase.pl.
"""
__author__ = "Bill MacCartney"
__copyright__ = "Copyright 2015, Bill MacCartney"
__credits__ = []
__license__ = "GNU General Public License, version 2.0"
__version__ = "0.9"
__maintainer__ = "Bill MacCartney"
__email__ = "See the author's website"
import re
import sys
from six.moves import urllib
valid_line = re.compile(r'^[a-z]+\((.*)\)\.$')
def filter_by_prefix(prefix, lines):
return [line for line in lines if line.startswith(prefix)]
def strip_brackets(string):
if string.startswith('['):
string = string[1:]
if string.endswith(']'):
string = string[:-1]
return string
def strip_quotes(string):
if string.startswith("'") and string.endswith("'"):
return string[1:-1]
else:
return string
def extract_fields(line):
fields = valid_line.match(line).group(1).split(',')
fields = [strip_quotes(strip_brackets(field.strip())) for field in fields]
fields = [field for field in fields if field != '']
return fields
def make_state_id(state_name):
return "/state/%s" % state_name.replace(" ", "_")
def make_city_id(city_name, state_abbrev):
return "/city/%s_%s" % (city_name.replace(" ", "_"), state_abbrev)
def make_river_id(river_name):
return "/river/%s" % river_name.replace(" ", "_")
def make_place_id(place_name):
return "/place/%s" % place_name.replace(" ", "_")
def make_mountain_id(mountain_name):
return "/mountain/%s" % mountain_name.replace(" ", "_")
def make_road_id(road_name):
return "/road/%s" % road_name.replace(" ", "_")
def make_lake_id(lake_name):
return "/lake/%s" % lake_name.replace(" ", "_")
def make_country_id(country_name):
return "/country/%s" % country_name.replace(" ", "_")
class GeobaseReader:
def __init__(self):
self.tuples = set()
self.prolog_file = '/tmp/geobase.pl'
self.ensure_prolog_file()
lines = self.read_lines()
self.parse(lines)
self.transitive_closure('contains')
def ensure_prolog_file(self):
try:
f = open(self.prolog_file, 'rU')
except IOError as e:
print('No local cache for Geobase Prolog file', file=sys.stderr)
self.download_prolog_file()
def download_prolog_file(self):
try:
from_url = 'ftp://ftp.cs.utexas.edu/pub/mooney/nl-ilp-data/geosystem/geobase'
print('Downloading from %s' % from_url, file=sys.stderr)
opener = urllib.request.URLopener()
opener.retrieve(from_url, self.prolog_file)
print('Download successful', file=sys.stderr)
except IOError as e:
print('Download failed!', file=sys.stderr)
raise e
def read_lines(self):
lines = []
try:
f = open(self.prolog_file, 'rU')
for line in f.readlines():
if valid_line.match(line):
lines.append(line[:-1])
f.close()
except IOError as e:
print('No local cache for Geobase Prolog file', file=sys.stderr)
raise e
return lines
def parse(self, lines):
self.parse_state(lines)
self.parse_city(lines)
self.parse_river(lines)
self.parse_border(lines)
self.parse_highlow(lines)
self.parse_mountain(lines)
self.parse_road(lines)
self.parse_lake(lines)
self.parse_country(lines)
def parse_state(self, lines):
lines = filter_by_prefix('state', lines)
for line in lines:
# state(name, abbreviation, capital, population, area, state_number, city1, city2, city3, city4)
fields = extract_fields(line)
state_name = fields[0]
state_abbrev = fields[1]
state_id = make_state_id(state_name)
capital_id = make_city_id(fields[2], state_abbrev)
population = int(float(fields[3]))
# convert from square miles to square meters
area = int(float(fields[4])) * 1609.344 * 1609.344
state_number = int(fields[5])
city1_id = make_city_id(fields[6], state_abbrev)
city2_id = make_city_id(fields[7], state_abbrev)
city3_id = make_city_id(fields[8], state_abbrev)
city4_id = make_city_id(fields[9], state_abbrev)
self.add_unary('state', state_id)
self.add_binary('name', state_id, state_name)
self.add_binary('abbreviation', state_id, state_abbrev)
self.add_binary('capital', state_id, capital_id)
self.add_binary('contains', state_id, capital_id)
self.add_binary('population', state_id, population)
self.add_binary('area', state_id, area)
self.add_binary('state_number', state_id, state_number)
self.add_binary('contains', state_id, city1_id)
self.add_binary('contains', state_id, city2_id)
self.add_binary('contains', state_id, city3_id)
self.add_binary('contains', state_id, city4_id)
self.add_binary('contains', '/country/usa', state_id)
print('GeobaseReader read %d state rows.' % len(lines))
def parse_city(self, lines):
lines = filter_by_prefix('city', lines)
for line in lines:
# city(state, state_abbreviation, name, population)
fields = extract_fields(line)
state_name = fields[0]
state_id = make_state_id(state_name)
state_abbrev = fields[1]
city_name = fields[2]
city_id = make_city_id(city_name, state_abbrev)
population = int(fields[3])
self.add_unary('city', city_id)
self.add_binary('name', city_id, city_name)
self.add_binary('contains', state_id, city_id)
self.add_binary('population', city_id, population)
print('GeobaseReader read %d city rows.' % len(lines))
def parse_river(self, lines):
lines = filter_by_prefix('river', lines)
for line in lines:
# river(name, length, [states through which it flows])
fields = extract_fields(line)
river_name = fields[0]
river_id = make_river_id(river_name)
# convert kilometers to meters
length = int(fields[1]) * 1000
traversed_state_names = fields[2:]
self.add_unary('river', river_id)
self.add_binary('name', river_id, river_name)
self.add_binary('length', river_id, length)
for state_name in traversed_state_names:
self.add_binary('traverses', river_id, make_state_id(state_name))
print('GeobaseReader read %d river rows.' % len(lines))
def parse_border(self, lines):
lines = filter_by_prefix('border', lines)
for line in lines:
# border(state, state_abbreviation, [states that border it])
fields = extract_fields(line)
state_name = fields[0]
state_id = make_state_id(state_name)
bordered_state_names = fields[2:]
for bordered_state_name in bordered_state_names:
bordered_state_id = make_state_id(bordered_state_name)
self.add_binary('borders', state_id, bordered_state_id)
self.add_binary('borders', bordered_state_id, state_id)
print('GeobaseReader read %d border rows.' % len(lines))
def parse_highlow(self, lines):
lines = filter_by_prefix('highlow', lines)
for line in lines:
# highlow(state, state_abbreviation, highest_point, highest_elevation, lowest_point, lowest_elevation)
fields = extract_fields(line)
state_name = fields[0]
state_id = make_state_id(state_name)
highest_point_name = fields[2]
# TODO: consider whether it should be a mountain id
highest_point_id = make_place_id(highest_point_name)
highest_elevation = int(fields[3])
lowest_point_name = fields[4]
lowest_point_id = make_place_id(lowest_point_name)
lowest_elevation = int(fields[5])
# TODO: consider whether the type should be mountain, not place
self.add_unary('place', highest_point_id)
self.add_binary('name', highest_point_id, highest_point_name)
self.add_unary('place', lowest_point_id)
self.add_binary('name', lowest_point_id, lowest_point_name)
self.add_binary('highest_point', state_id, highest_point_id)
self.add_binary('highest_elevation', state_id, highest_elevation)
self.add_binary('height', highest_point_id, highest_elevation)
self.add_binary('lowest_point', state_id, lowest_point_id)
self.add_binary('lowest_elevation', state_id, lowest_elevation)
self.add_binary('height', lowest_point_id, lowest_elevation)
print('GeobaseReader read %d highlow rows.' % len(lines))
def parse_mountain(self, lines):
lines = filter_by_prefix('mountain', lines)
for line in lines:
# mountain(state, state_abbreviation, name, height)
fields = extract_fields(line)
state_name = fields[0]
state_id = make_state_id(state_name)
mountain_name = fields[2]
mountain_id = make_mountain_id(mountain_name)
height = int(fields[3])
self.add_unary('mountain', mountain_id)
self.add_binary('name', mountain_id, mountain_name)
self.add_binary('contains', state_id, mountain_id)
self.add_binary('height', mountain_id, height)
print('GeobaseReader read %d mountain rows.' % len(lines))
def parse_road(self, lines):
lines = filter_by_prefix('road', lines)
for line in lines:
# road(number, [states it passes through])
fields = extract_fields(line)
road_name = fields[0]
road_id = make_road_id(road_name)
traversed_state_names = fields[1:]
self.add_unary('road', road_id)
self.add_binary('name', road_id, road_name)
for traversed_state_name in traversed_state_names:
self.add_binary('traverses', road_id, make_state_id(traversed_state_name))
print('GeobaseReader read %d road rows.' % len(lines))
def parse_lake(self, lines):
lines = filter_by_prefix('lake', lines)
for line in lines:
# lake(name, area, [states it is in])
fields = extract_fields(line)
lake_name = fields[0]
lake_id = make_lake_id(fields[0])
# convert from square kilometers to square meters
area = int(fields[1]) * 1e6
traversed_state_names = fields[2:]
self.add_unary('lake', lake_id)
self.add_binary('name', lake_id, lake_name)
self.add_binary('area', lake_id, area)
for traversed_state_name in traversed_state_names:
# 'traverses' may sound odd here, but, logically, it's the same relation.
self.add_binary('traverses', lake_id, make_state_id(traversed_state_name))
print('GeobaseReader read %d lake rows.' % len(lines))
def parse_country(self, lines):
lines = filter_by_prefix('country', lines)
for line in lines:
# country(name, population, area)
fields = extract_fields(line)
country_name = fields[0]
country_id = make_country_id(country_name)
population = int(fields[1])
# convert from square kilometers to square meters
area = int(fields[2]) * 1e6
self.add_unary('country', country_id)
self.add_binary('name', country_id, country_name)
self.add_binary('population', country_id, population)
self.add_binary('area', country_id, area)
print('GeobaseReader read %d country row.' % len(lines))
def add_unary(self, rel, elt):
self.tuples.add((rel, elt))
# print 'add_unary(%s, %s)' % (rel, elt)
def add_binary(self, rel, src, dst):
self.tuples.add((rel, src, dst))
# print 'add_binary(%s, %s, %s)' % (rel, src, dst)
def transitive_closure(self, rel):
edges = [edge for edge in self.tuples if edge[0] == rel]
for edge_1 in edges:
for edge_2 in edges:
if edge_1[2] == edge_2[1]:
edges.append((rel, edge_1[1], edge_2[2]))
before_size = len(self.tuples)
for edge in edges:
self.tuples.add(edge)
print('GeobaseReader computed transitive closure of \'%s\', adding %d edges' % (
rel, len(self.tuples) - before_size))
if __name__ == '__main__':
geobase = GeobaseReader()