-
Notifications
You must be signed in to change notification settings - Fork 68
/
Copy pathblender_dataset_generator.py
400 lines (325 loc) · 14 KB
/
blender_dataset_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
# -*- coding: future_fstrings -*-
#
# Authors: Bowen Wen
# Contact: [email protected]
# Created in 2020
#
# Copyright (c) Rutgers University, 2020 All rights reserved.
#
# Wen, B., C. Mitash, B. Ren, and K. E. Bekris. "se (3)-TrackNet:
# Data-driven 6D Pose Tracking by Calibrating Image Residuals in
# Synthetic Domains." In IEEE/RSJ International Conference on Intelligent
# Robots and Systems (IROS). 2020.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the PRACSYS, Bowen Wen, Rutgers University,
# nor the names of its contributors may be used to
# endorse or promote products derived from this software without
# specific prior written permission.
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 'AS IS' AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
import bpy
import os, sys, time,copy,string
code_dir = os.path.dirname(os.path.realpath(__file__))
sys.path.append(code_dir)
import cv2
from PIL import Image, ImageDraw
import yaml
import numpy as np
import bmesh
from mathutils.bvhtree import BVHTree
import glob,subprocess
import argparse
import transformations as T
from mathutils import Vector, Matrix, Quaternion
import multiprocessing
import re
def readExr(exr_dir):
return cv2.imread(exr_dir, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH)
def matrixToNumpyArray(mat):
new_mat = np.array([[mat[0][0],mat[0][1],mat[0][2],mat[0][3]],
[mat[1][0],mat[1][1],mat[1][2],mat[1][3]],
[mat[2][0],mat[2][1],mat[2][2],mat[2][3]],
[mat[3][0],mat[3][1],mat[3][2],mat[3][3]]])
return new_mat
def numpyArrayToMatrix(array):
mat = Matrix(((array[0,0],array[0,1], array[0,2], array[0,3]),
(array[1,0],array[1,1], array[1,2], array[1,3]),
(array[2,0],array[2,1], array[2,2], array[2,3]) ,
(array[3,0],array[3,1], array[3,2], array[3,3])))
return mat
def changeEnvironmentLight(dataset_info):
env_light_range = dataset_info['blender']['env_light_range']
bpy.context.scene.world.light_settings.use_environment_light = True
bpy.context.scene.world.light_settings.environment_energy = np.random.uniform(env_light_range[0],env_light_range[1])
env_color_r = np.random.uniform(dataset_info['blender']['env_light_color'][0][0], dataset_info['blender']['env_light_color'][0][1])
env_color_g = np.random.uniform(dataset_info['blender']['env_light_color'][1][0], dataset_info['blender']['env_light_color'][1][1])
env_color_b = np.random.uniform(dataset_info['blender']['env_light_color'][2][0], dataset_info['blender']['env_light_color'][2][1])
bpy.context.scene.world.ambient_color = (env_color_r,env_color_g,env_color_b)
def reset(dataset_info):
changeEnvironmentLight(dataset_info)
for ob in bpy.data.objects:
ob.select = False
for ob in bpy.data.objects:
if ob.type == "LAMP":
ob.select = True
bpy.ops.object.delete()
else:
ob.select = False
for ob in bpy.data.objects:
if 'ob' in ob.name.lower():
ob.location[0] = 9999
def setupCamera(H,W,K):
bpy.context.scene.render.resolution_x = W
bpy.context.scene.render.resolution_y = H
cam_data = bpy.data.objects['Camera'].data
sensor_width_in_mm = cam_data.sensor_width
cam_data.shift_x = -(K[0,2] - 0.5 * W) / W
cam_data.shift_y = (K[1,2] - 0.5 * H) / W
cam_data.lens = K[0,0] / W * sensor_width_in_mm
pixel_aspect = K[1,1] / K[0,0]
bpy.context.scene.render.pixel_aspect_x = 1.0
bpy.context.scene.render.pixel_aspect_y = pixel_aspect
bpy.context.scene.camera = bpy.data.objects['Camera']
bpy.context.scene.update()
def placeObject(ob_name,pose):
ob = bpy.data.objects[ob_name]
pose_mat = numpyArrayToMatrix(pose)
ob.matrix_world = pose_mat
bpy.context.scene.update()
def addLightAndPlace(dataset_info,num):
for _ in range(num):
bpy.ops.object.lamp_add(type='POINT', view_align = False)
for ob in bpy.data.objects:
if 'Point' in ob.name:
lamp_brightness = dataset_info['blender']['lamp_brightness']
pos_ranges = dataset_info['blender']['lamp_pos_range']
lx = np.random.uniform(pos_ranges[0][0],pos_ranges[0][1])
ly = np.random.uniform(pos_ranges[1][0],pos_ranges[1][1])
lz = np.random.uniform(pos_ranges[2][0],pos_ranges[2][1])
strength = np.random.uniform(lamp_brightness[0], lamp_brightness[1])
ob.location = [lx, ly, lz]
light_color_ranges = dataset_info['blender']['lamp_colors']
r = np.random.uniform(light_color_ranges[0][0],light_color_ranges[0][1])
g = np.random.uniform(light_color_ranges[1][0],light_color_ranges[1][1])
b = np.random.uniform(light_color_ranges[2][0],light_color_ranges[2][1])
ob.data.use_specular = False
ob.data.shadow_method = 'RAY_SHADOW'
ob.data.energy = strength
ob.data.color = (r, g, b)
ob.data.shadow_ray_samples = 6
ob.data.shadow_ray_sample_method = 'ADAPTIVE_QMC'
def loadObjectModel(file_dir,index,name):
folder = file_dir
if '.' not in file_dir:
file_dir = glob.glob(file_dir+'/*.obj')[0]
else:
folder = os.path.dirname(file_dir)
print('Loading object ',file_dir)
if '.obj' in file_dir:
bpy.ops.import_scene.obj(filepath=file_dir)
ob = bpy.context.selected_objects[0]
if len(ob.data.materials)==0:
mat_name = "Material"
mat = bpy.data.materials.new(name=mat_name)
ob.data.materials.append(mat)
mat = ob.data.materials[0]
slot = mat.texture_slots.add()
elif '.dae' in file_dir:
bpy.ops.wm.collada_import(filepath=file_dir)
imported = bpy.context.selected_objects[0]
imported.pass_index = index
imported.location[0] = 9999
imported.name = name
def changeObjectTexture(ob_name,image_dir):
ob=bpy.data.objects[ob_name]
if len(ob.data.materials)==0:
mat_name = "Material"
mat = bpy.data.materials.new(name=mat_name)
ob.data.materials.append(mat)
mat = ob.data.materials[0]
mat.use_nodes = False
img = bpy.data.images.load(image_dir) # img_name is the path to image
tex_name = "Texture"
tex = bpy.data.textures.new(tex_name, 'IMAGE')
tex.image = img
slot = mat.texture_slots[0]
slot.texture = tex
bpy.context.scene.update()
ob.active_material.texture_slots[0].texture_coords = 'OBJECT'
ob.active_material.texture_slots[0].scale[0] = 4
ob.active_material.texture_slots[0].scale[1] = 4
def random_string(size):
chars = list(string.ascii_uppercase + string.digits)
return ''.join(np.random.choice(chars) for _ in range(size))
def render(K,id):
'''
return rgb, depth, id mask. object index was assigned in __init__
id_mask: see config files
'''
out_dir = '/tmp/{}/'.format(random_string(size=20))
os.system('rm -rf {} && mkdir -p {}'.format(out_dir,out_dir))
for ob in bpy.data.objects:
if 'ob' in ob.name:
ob.active_material.use_nodes = False
tree = bpy.context.scene.node_tree
tree.render_quality = "HIGH"
tree.edit_quality = "HIGH"
tree.use_opencl = True
links = tree.links
for n in tree.nodes:
tree.nodes.remove(n)
#================ collect images and label ===================
render_node = tree.nodes.new('CompositorNodeRLayers')
rgb_node = tree.nodes.new('CompositorNodeOutputFile') # rgb
rgb_node.format.file_format = 'PNG'
rgb_node.base_path = out_dir
rgb_node.file_slots[0].path = "%07drgbB"%(id)
links.new(render_node.outputs['Image'], rgb_node.inputs[0])
depth_node = tree.nodes.new('CompositorNodeOutputFile') # depth
depth_node.format.file_format = 'OPEN_EXR'
depth_node.base_path = out_dir
depth_node.file_slots[0].path = "%07ddepthB"%(id)
links.new(render_node.outputs['Depth'], depth_node.inputs[0])
seg_node = tree.nodes.new('CompositorNodeOutputFile') # seg
seg_node.format.file_format = 'OPEN_EXR'
seg_node.base_path = out_dir
seg_node.file_slots[0].path = "%07dsegB"%(id)
links.new(render_node.outputs['IndexOB'], seg_node.inputs[0])
bpy.ops.render.render(write_still=False)
index = int(re.findall(r'depthB\d{4}',glob.glob(out_dir+'*depthB*.exr')[0])[0].replace('depthB',''))
rgbB = np.array(Image.open(out_dir+'%07drgbB%04d.png'%(id,index)))[:,:,:3]
depth_meter = readExr(out_dir+'%07ddepthB%04d.exr'%(id,index))[:,:,0]
depth_meter[depth_meter<0.1] = 0
depth_meter[depth_meter>2.0] = 0
depthB = (depth_meter*1000).astype(np.uint16)
segB = readExr(out_dir+'%07dsegB%04d.exr'%(id,index)).astype(np.uint8)
os.system('rm -rf {}'.format(out_dir))
return rgbB, depthB, segB
def get_dynamic_objects():
obs = []
for ob in bpy.data.objects:
if 'Camera' not in ob.name and 'Point' not in ob.name and 'box_plane' not in ob.name:
obs.append(ob)
return obs
def generate():
code_dir = os.path.dirname(os.path.realpath(__file__))
dataset_info_dir = f"{code_dir}/dataset_info.yml"
with open(dataset_info_dir,'r') as ff:
dataset_info = yaml.safe_load(ff)
num_images = int((dataset_info['train_samples']+dataset_info['val_samples'])/0.7)
xmin = dataset_info['blender']['range_x'][0]
xmax = dataset_info['blender']['range_x'][1]
ymin = dataset_info['blender']['range_y'][0]
ymax = dataset_info['blender']['range_y'][1]
zmin = dataset_info['blender']['range_z'][0]
zmax = dataset_info['blender']['range_z'][1]
code_dir = os.path.dirname(os.path.realpath(__file__))
out_dir = f'{code_dir}/generated_data/'
print('Using: {}'.format(dataset_info_dir))
os.system(f'rm -rf {out_dir} && mkdir -p {out_dir}')
H = dataset_info['camera']['height']
W = dataset_info['camera']['width']
K = np.eye(3)
K[0,0] = dataset_info['camera']['focalX']
K[1,1] = dataset_info['camera']['focalY']
K[0,2] = dataset_info['camera']['centerX']
K[1,2] = dataset_info['camera']['centerY']
print('K:\n',K)
K[1,1] = K[0,0]
setupCamera(W=dataset_info['camera']['width'],H=dataset_info['camera']['height'],K=K)
texture_folders = dataset_info['texture_folders']
texture_files = []
print('Collecting texture files...')
for folder in texture_folders:
texture_files += glob.glob(folder,recursive=True)
texture_files.sort()
assert len(texture_files)>0
print('#texture_files:',len(texture_files))
for k in dataset_info['models'].keys():
obj_file = dataset_info['models'][k]['model_path'].replace('.ply','.obj')
loadObjectModel(obj_file,index=k,name=str(k))
id2ob = {}
obs = get_dynamic_objects()
for ob in obs:
print(ob.name)
bpy.context.scene.objects.active = ob
bpy.ops.rigidbody.object_add(type='ACTIVE')
bpy.ops.object.modifier_add(type = 'COLLISION')
ob.rigid_body.mass = 10.0
ob.rigid_body.use_margin = True
ob.rigid_body.collision_margin = 1e-4
ob.rigid_body.linear_damping = 0.01
ob.rigid_body.angular_damping = 0.01
ob.rigid_body.friction = 0.01
ob.collision.absorption = 0.01
ob.collision.friction_factor = 0.01
ob.rigid_body.restitution = 0.99
ob.data.materials[0].ambient = 0.2
ob.layers[0] = True
class_id = int(ob.pass_index)
if class_id<255:
id2ob[class_id] = ob
class_ids = np.array(list(id2ob.keys()))
print('class_ids',class_ids)
count = 0
while count<num_images:
print('>>>>>>>>>>>>>>>>>>>>>>>>>> {}/{}'.format(count,num_images))
reset(dataset_info)
light_num = np.random.randint(0,dataset_info['blender']['max_lamp_num']+1)
print('light_num=',light_num)
addLightAndPlace(dataset_info,light_num)
texture_file = np.random.choice(texture_files)
print('Using texture file\n',texture_file)
for ob in bpy.data.objects:
if 'box_plane' in ob.name:
changeObjectTexture(ob.name,texture_file)
obs = get_dynamic_objects()
for ob in obs:
pose = np.eye(4)
pose[0,3] = np.random.uniform(xmin,xmax)
pose[1,3] = np.random.uniform(ymin,ymax)
pose[2,3] = np.random.uniform(zmin,zmax)
pose[:3,:3] = T.random_rotation_matrix()[:3,:3]
placeObject(ob.name,pose)
print('start gravity simulation')
bpy.context.scene.gravity = np.random.uniform(-2,2,size=3)
for ii in range(1,4):
bpy.context.scene.frame_set(ii)
bpy.context.scene.update()
blendercam_in_world = matrixToNumpyArray(bpy.data.objects['Camera'].matrix_world)
rgbB, depthB, segB = render(K,count)
if (segB>0).sum()<100: #Target object not in the image
print('segB too small')
continue
print("Saving to ",out_dir+'/%07drgb.png'%(count))
Image.fromarray(rgbB).save(out_dir+'/%07drgb.png'%(count), optimize=True)
cv2.imwrite(out_dir+'/%07ddepth.png'%(count),depthB.astype(np.uint16))
cv2.imwrite(out_dir+'/%07dseg.png'%(count),segB.astype(np.uint8))
bpy.context.scene.update()
poses_in_world = []
for class_id in class_ids:
ob = id2ob[class_id]
ob_in_world = matrixToNumpyArray(ob.matrix_world)
poses_in_world.append(ob_in_world)
poses_in_world = np.array(poses_in_world)
np.savez(out_dir+'/%07dposes_in_world.npz'%(count), class_ids=class_ids, poses_in_world=poses_in_world, blendercam_in_world=blendercam_in_world,K=K)
count += 1
print('Finished {}'.format(out_dir))
if __name__=='__main__':
generate()