-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpars_climate.qmd
1022 lines (953 loc) · 29.9 KB
/
pars_climate.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Climate effect {#sec-parsClimate}
In this section, I discuss the effect of climate on growth, survival, and recruitment vital rates.
We employ the bioclimatic variables of mean annual temperature (MAT) and mean annual precipitation (MAP), averaging these variables over the years, covering the time intervals spanning two measurement periods.
The effect of these two variables on growth, survival, and recruitment is modeled using an unimodal function characterized by two key parameters: the optimal climate ($\xi$), representing the climatic conditions where growth and survival reach their peak, and the climate breadth ($\sigma$), which quantifies the rate of change in the climate's impact as one moves away from this optimal point.
In the fit process, we transformed the climate breadth parameters as $\sigma = \tau^{-1}$ for sampling efficiency.
```{r,include=FALSE,echo=FALSE}
Echo=FALSE
Eval=TRUE
Cache=TRUE
Warng=FALSE
Msg=FALSE
library(tidyverse)
library(cmdstanr)
library(posterior)
library(ggdist)
library(ggpubr)
library(ggrepel)
```
```{r intercept_loadPars,echo=Echo,eval=Eval,cache=Cache,warning=Warng,message=Msg}
data_path <- readLines('_data.path')
pars_path <- file.path(data_path, 'output_sim_processed')
models <- c(
'growth' = 'intcpt_plot_comp_clim',
'mort' = 'intcpt_plot_comp_clim',
'recruit' = 'intcpt_plot_comp_clim'
)
## Species if info
spIds <- read_csv(
file.path(
data_path, 'species_id.csv'
)
) |>
mutate(
shade = factor(shade, levels = c('tolerant', 'intermediate', 'intolerant')),
shade_sylvics = factor(shade_sylvics, levels = c('very-tolerant',
'tolerant',
'intermediate',
'intolerant',
'very-intolerant'
)),
succession = factor(succession, levels = c('pioneer',
'intermediate',
'climax'))
) |>
filter(sp_to_analyze)
# load data to unscale climate variables and function to scale climate back to original range
clim_scaleRange <- readRDS(file.path(data_path, 'climate_scaleRange.RDS')) |>
bind_cols()
unscaleClim <- function(
value,
# if value is temp or prec
clim,
# temp and prec range are vectors of format [min, max]
temp_rg = clim_scaleRange$bio_01_mean,
prec_rg = clim_scaleRange$bio_12_mean
) {
if(clim == 'temp') {
return( value * (temp_rg[2] - temp_rg[1]) + temp_rg[1] )
}else if(clim == 'prec') {
return( value * (prec_rg[2] - prec_rg[1]) + prec_rg[1] )
} else{
stop('Clim must be either `temp` or `prec` character.')
}
}
# Load parameters
map_dfr(
spIds$species_id_old,
~ readRDS(
paste0(
pars_path, '/growth/', models['growth'], '/posterior_pop_', .x, '.RDS'
)
) |>
pivot_wider(names_from = par) |>
select(iter, c(contains('optimal'), contains('tau'))) |>
bind_cols(species_id = .x)
) ->
pars_growth
map_dfr(
spIds$species_id_old,
~ readRDS(
paste0(
pars_path, '/mort/', models['mort'], '/posterior_pop_', .x, '.RDS'
)
) |>
pivot_wider(names_from = par) |>
select(iter, c(contains('optimal'), contains('tau'))) |>
bind_cols(species_id = .x)
) ->
pars_survival
map_dfr(
spIds$species_id_old,
~ readRDS(
paste0(
pars_path, '/recruit/', models['recruit'], '/posterior_pop_', .x, '.RDS'
)
) |>
pivot_wider(names_from = par) |>
select(iter, c(contains('optimal'), contains('tau'))) |>
bind_cols(species_id = .x)
) ->
pars_recruit
treeData <- readRDS(file.path(data_path, 'treeData.RDS')) |>
filter(species_id %in% spIds$species_id_old)
```
## Optimal climate
@fig-matDist and @fig-mapDist show the distribution of the optimal climate parameter, meaning the climate location where the vital rate is at its maximum, across the 31 tree species.
The parameter mean and their uncertainty are displayed with the dot interval for growth (green), recruitment (yellow), and survival (brown).
The density plot in light gray is the distribution of the climate variable among all observed trees across space and time.
#### Mean annual temperature
```{r climate_optClim,echo=Echo,eval=Eval,cache=Cache,warning=Warng,message=Msg}
#| label: fig-matDist
#| fig-width: 8.5
#| fig-height: 7
#| fig-cap: "Distribution for the optimal annual mean temperature ($\\xi_{MAT}$) for growth (green), recruitment (yellow), and survival (brown). The gray density plot is the annual mean temperature distribution among all observed trees across space and time."
treeData |>
left_join(
spIds,
by = c('species_id' = 'species_id_old')
) |>
filter(!is.na(bio_01_mean_scl)) |>
ggplot() +
aes(unscaleClim(bio_01_mean_scl, 'temp'), fct_reorder(species_name, bio_01_mean_scl)) +
ggridges::geom_density_ridges2(color = NA, alpha = 0.5) +
stat_pointinterval(
data = pars_growth |>
group_by(species_id) |>
mutate(growth = optimal_temp, iter = 1:n()) |>
select(species_id, iter, growth) |>
ungroup() |>
left_join(
pars_survival |>
group_by(species_id) |>
mutate(survival = optimal_temp, iter = 1:n()) |>
select(species_id, iter, survival) |>
ungroup()
) |>
left_join(
pars_recruit |>
group_by(species_id) |>
mutate(recruit = optimal_temp, iter = 1:n()) |>
select(species_id, iter, recruit) |>
ungroup()
) |>
pivot_longer(
cols = c(growth, survival, recruit)
) |>
left_join(
spIds,
by = c('species_id' = 'species_id_old')
),
aes(unscaleClim(value, 'temp'), species_name, color = name),
alpha = 0.95,
position = position_dodge(width = 0.4) # dodge to avoid overlap
) +
theme_classic() +
scale_color_manual(
values = c('#018571', '#dfc27d', '#a6611a'),
labels = c('Growth', 'Recruitment', 'Survival')
) +
theme(
axis.text.y = element_text(face = "italic"),
panel.grid.major.y = element_line(colour = rgb(0,0,0,.1))
) +
labs(
color = expression(xi[MAT]),
x = expression(paste("Mean annual temperature (", degree, "C)")),
y = ''
)
```
#### Mean annual precipitation
```{r climate_optPrec,echo=Echo,eval=Eval,cache=Cache,warning=Warng,message=Msg}
#| label: fig-mapDist
#| fig-width: 8.5
#| fig-height: 7
#| fig-cap: "Distribution for the optimal mean annual precipitation ($\\xi_{MAP}$) for growth (green), recruitment (yellow), and survival (brown). The density plot in gray is the distribution of annual precipitation variable among all observed trees across space and time."
treeData |>
left_join(
spIds,
by = c('species_id' = 'species_id_old')
) |>
ggplot() +
aes(unscaleClim(bio_12_mean_scl, 'prec'), fct_reorder(species_name, bio_12_mean_scl)) +
ggridges::geom_density_ridges2(color = NA, alpha = 0.5) +
stat_pointinterval(
data = pars_growth |>
group_by(species_id) |>
mutate(growth = optimal_prec, iter = 1:n()) |>
select(species_id, iter, growth) |>
ungroup() |>
left_join(
pars_survival |>
group_by(species_id) |>
mutate(survival = optimal_prec, iter = 1:n()) |>
select(species_id, iter, survival) |>
ungroup()
) |>
left_join(
pars_recruit |>
group_by(species_id) |>
mutate(recruit = optimal_prec, iter = 1:n()) |>
select(species_id, iter, recruit) |>
ungroup()
) |>
pivot_longer(
cols = c(growth, survival, recruit)
) |>
left_join(
spIds,
by = c('species_id' = 'species_id_old')
),
aes(unscaleClim(value, 'prec'), species_name, color = name),
alpha = 0.95,
position = position_dodge(width = 0.4) # dodge to avoid overlap
) +
theme_classic() +
scale_color_manual(
values = c('#018571', '#dfc27d', '#a6611a'),
labels = c('Growth', 'Recruitment', 'Survival')
) +
xlab('Annual Precipitation (mm)') +
ylab('') +
theme(
axis.text.y = element_text(face = "italic"),
panel.grid.major.y = element_line(colour = rgb(0,0,0,.1))
) +
labs(color = expression(xi[MAP]),)
```
#### Optimal temperature vs temperature mid range
```{r optTempVsMid,echo=Echo,eval=Eval,cache=Cache,warning=Warng,message=Msg}
#| label: fig-optTempVsMid
#| fig-width: 8
#| fig-height: 4
#| fig-cap: "Optimal Mean annual temperature for the growth, survival, and recruitment models as function of each species midpoint temperature range."
treeData |>
# mutate(
# bio_01_mean_nat = unscaleClim(bio_01_mean_scl, 'temp'),
# bio_12_mean_nat = unscaleClim(bio_12_mean_scl, 'prec')
# ) |>
group_by(species_id) |>
reframe(
mid_temp = (max(bio_01_mean, na.rm = TRUE)+min(bio_01_mean, na.rm = TRUE))/2,
mid_prec = (max(bio_12_mean, na.rm = TRUE)+min(bio_12_mean, na.rm = TRUE))/2
) ->
sp_mid
pars_growth |>
bind_cols(vr = 'Growth') |>
bind_rows(
pars_survival |>
bind_cols(vr = 'Survival')
) |>
bind_rows(
pars_recruit |>
bind_cols(vr = 'Recruitment')
) |>
left_join(sp_mid) |>
ggplot() +
aes(mid_temp, unscaleClim(optimal_temp, 'temp')) +
aes(color = vr) +
stat_pointinterval(position = position_dodgejust(0.5)) +
geom_smooth(method = 'lm') +
scale_color_manual(
values = c('#018571', '#dfc27d', '#a6611a'),
labels = c('Growth', 'Recruitment', 'Survival')
) +
theme_classic() +
labs(
x = 'Annual Mean Temperature midpoint (°C)',
y = expression(xi[MAT]),
color = ''
)
```
#### Optimal precipitaiton vs precipitation mid range
```{r optPrecVsMid,echo=Echo,eval=Eval,cache=Cache,warning=Warng,message=Msg}
#| label: fig-optPrecVsMid
#| fig-width: 8
#| fig-height: 4
#| fig-cap: "Optimal Mean annual temperature for the growth, survival, and recruitment models as function of each species midpoint temperature range."
treeData |>
# mutate(
# bio_01_mean_nat = unscaleClim(bio_01_mean_scl, 'temp'),
# bio_12_mean_nat = unscaleClim(bio_12_mean_scl, 'prec')
# ) |>
group_by(species_id) |>
reframe(
mid_temp = (max(bio_01_mean, na.rm = TRUE)+min(bio_01_mean, na.rm = TRUE))/2,
mid_prec = (max(bio_12_mean, na.rm = TRUE)+min(bio_12_mean, na.rm = TRUE))/2
) ->
sp_mid
pars_growth |>
bind_cols(vr = 'Growth') |>
bind_rows(
pars_survival |>
bind_cols(vr = 'Survival')
) |>
bind_rows(
pars_recruit |>
bind_cols(vr = 'Recruitment')
) |>
left_join(sp_mid) |>
ggplot() +
aes(mid_prec, unscaleClim(optimal_prec, 'prec')) +
aes(color = vr) +
stat_pointinterval(position = position_dodgejust(0.5)) +
geom_smooth(method = 'lm') +
scale_color_manual(
values = c('#018571', '#dfc27d', '#a6611a'),
labels = c('Growth', 'Recruitment', 'Survival')
) +
theme_classic() +
labs(
x = 'Annual Mean Precipitation midpoint (°C)',
y = expression(xi[MAP]),
color = ''
)
```
## Climate breadth
The climate breadth is the second parameter to account for the climate effect on the growth, survival, and recruitment functions.
We define climate breadth as the precision parameter, which is the inverse of the variance of the bell shape ($\tau = \frac{1}{\sigma^2}$).
The closer this value is to zero, the higher is the breadth around the mean.
In other words, when climate breadth is zero, the bell-shaped unimodal function becomes an almost flat line.
#### Climate breadth
```{r climate_tauSp,echo=Echo,eval=Eval,cache=Cache,warning=Warng,message=Msg}
#| label: fig-climBreadth
#| fig-width: 8.5
#| fig-height: 6
#| fig-cap: "Mean annual temperature and mean annual precipitation effect size across the growth (green), recruitment (yellow), and survival (brown) vital rates. The higher the value, the stronger the negative effect of climate when moving from the optimal climate."
pars_growth |>
mutate(temp_growth = tau_temp,
prec_growth = tau_prec) |>
group_by(species_id) |>
mutate(iter = 1:n()) |>
select(species_id, iter, contains('growth')) |>
ungroup() |>
left_join(
pars_survival |>
mutate(temp_survival = tau_temp,
prec_survival = tau_prec) |>
group_by(species_id) |>
mutate(iter = 1:n()) |>
select(species_id, iter, contains('survival')) |>
ungroup()
) |>
left_join(
pars_recruit |>
mutate(temp_recruit = tau_temp,
prec_recruit = tau_prec) |>
group_by(species_id) |>
mutate(iter = 1:n()) |>
select(species_id, iter, contains('recruit')) |>
ungroup()
) |>
pivot_longer(
cols = c(contains('temp_'), contains('prec_')),
names_to = c('clim', 'vr'),
names_sep = '_'
) |>
left_join(
spIds,
by = c('species_id' = 'species_id_old')
) |>
mutate(
clim = case_match(
clim,
"temp" ~ "Mean annual temperature",
"prec" ~ "Mean annual precipitation"
)
) |>
ggplot() +
aes(value, fct_reorder(species_name, value)) +
aes(color = vr) +
facet_wrap(~clim) +
stat_pointinterval() +
theme_classic() +
scale_color_manual(
values = c('#018571', '#dfc27d', '#a6611a'),
labels = c('Growth', 'Recruitment', 'Survival')
) +
xlab(expression(tau)) +
ylab('') +
theme(axis.text.y = element_text(face = "italic")) +
labs(color = '')
```
```{r climate_tauSumm,echo=Echo,eval=Eval,cache=Cache,warning=Warng,message=Msg}
#| label: fig-climBreadthSumm
#| fig-width: 8
#| fig-height: 5
#| fig-cap: "Mean annual temperature and mean annual precipitation effect size across the growth (green), recruitment (yellow), and survival (brown) vital rates. The higher the value, the stronger the negative effect of climate when moving from the optimal climate."
pars_growth |>
group_by(species_id) |>
reframe(
temp_growth = mean(tau_temp),
prec_growth = mean(tau_prec)
) |>
select(species_id, contains('growth')) |>
ungroup() |>
left_join(
pars_survival |>
group_by(species_id) |>
reframe(
temp_survival = mean(tau_temp),
prec_survival = mean(tau_prec)
) |>
select(species_id, contains('survival')) |>
ungroup()
) |>
left_join(
pars_recruit |>
group_by(species_id) |>
reframe(
temp_recruit = mean(tau_temp),
prec_recruit = mean(tau_prec)
) |>
select(species_id, contains('recruit')) |>
ungroup()
) |>
pivot_longer(
cols = c(contains('temp_'), contains('prec_')),
names_to = c('clim', 'vr'),
names_sep = '_'
) |>
left_join(
spIds,
by = c('species_id' = 'species_id_old')
) |>
mutate(
clim = case_match(
clim,
"temp" ~ "Mean annual temperature",
"prec" ~ "Mean annual precipitation"
),
vr = case_match(
vr,
'growth' ~ 'Growth',
'recruit' ~ 'Recruitment',
'survival' ~ 'Survival'
)
) |>
ggplot() +
aes(vr, value) +
aes(fill = clim) +
geom_boxplot(alpha = 0.8) +
theme_classic() +
scale_fill_manual(
values = c('#386cb0', '#fdc086')
) +
ylab(expression(tau)) +
xlab('') +
theme(axis.text.y = element_text(face = "italic")) +
labs(fill = '') +
theme(legend.position = 'bottom')
```
<!--
#### Climate breadth vs optimal climate
We have seen with @fig-matDist and @fig-mapDist that the optimal temperature and precipitation are often at the border of the distribution.
In @fig-optClimVsTau, we plot the correlation between the optimal climate's position with its distribution (0 representing the lower limit and 1 indicating the upper limit) and the climate breadth parameter. -->
```{r climate_tauvsRangeSize,echo=Echo,eval=FALSE,cache=Cache,warning=Warng,message=Msg}
#| label: fig-optClimVsTau
#| fig-width: 9
#| fig-height: 6
#| fig-cap: "Climate breadth in function of mean optimal climate relative to the species climate range in which 0 means lower climate limit and 1 means upper climate limit."
treeData |>
# mutate(
# bio_01_mean_nat = unscaleClim(bio_01_mean_scl, 'temp'),
# bio_12_mean_nat = unscaleClim(bio_12_mean_scl, 'prec')
# ) |>
group_by(species_id) |>
reframe(
max_temp = quantile(bio_01_mean_scl, 1, na.rm = TRUE),
min_temp = quantile(bio_01_mean_scl, 0, na.rm = TRUE),
max_prec = quantile(bio_12_mean_scl, 1, na.rm = TRUE),
min_prec = quantile(bio_12_mean_scl, 0, na.rm = TRUE)
) ->
sp_range
pars_growth |>
bind_cols(vr = 'growth') |>
bind_rows(
pars_survival |>
bind_cols(vr = 'survival')
) |>
bind_rows(
pars_recruit |>
bind_cols(vr = 'recruitment')
) |>
left_join(sp_range) |>
mutate(
optimal_temp_scl = (optimal_temp - min_temp)/(max_temp - min_temp),
optimal_prec_scl = (optimal_prec - min_prec)/(max_prec - min_prec)
) |>
group_by(species_id, vr) |>
reframe(
temp = mean(optimal_temp_scl),
prec = mean(optimal_prec_scl)
) |>
pivot_longer(
cols = !c(species_id, vr),
names_to = 'clim',
values_to = 'clim_value'
) ->
meanOptimalClim_scl
pars_growth |>
group_by(species_id) |>
mutate(
iter = 1:n(),
temp_growth = tau_temp,
prec_growth = tau_prec
) |>
ungroup() |>
select(species_id, iter, temp_growth, prec_growth) |>
left_join(
pars_survival |>
group_by(species_id) |>
mutate(
iter = 1:n(),
temp_survival = tau_temp,
prec_survival = tau_prec
) |>
ungroup() |>
select(species_id, iter, temp_survival, prec_survival)
) |>
left_join(
pars_recruit |>
group_by(species_id) |>
mutate(
iter = 1:n(),
temp_recruitment = tau_temp,
prec_recruitment = tau_prec
) |>
ungroup() |>
select(species_id, iter, temp_recruitment, prec_recruitment)
) |>
pivot_longer(
cols = c(contains('temp'), contains('prec')),
names_to = c('clim', 'vr'),
names_sep = '_'
) |>
left_join(meanOptimalClim_scl) |>
left_join(
spIds,
by = c('species_id' = 'species_id_old')
) |>
mutate(
clim = case_match(clim, 'temp' ~ 'Mean annual temperature',
'prec' ~ 'Mean annual precipitation')
) |>
ggplot() +
aes(x = clim_value, y = value) +
aes(color = vr) +
facet_grid(clim~vr) +
stat_pointinterval(alpha = 0.8) +
scale_color_manual(
values = c('#018571', '#dfc27d', '#a6611a')
) +
geom_smooth(method = 'lm') +
theme_classic() +
xlab('Mean optimal climate relative to the species range') +
ylab(expression(tau)) +
labs(color = '') +
theme(legend.position = 'top')
```
#### Climate breadth vs observed climate range size
In @fig-climRangeVsTau, we plot the climate range size of a species with its climate breadth.
```{r climate_tauvsRangeSize,echo=Echo,eval=Eval,cache=Cache,warning=Warng,message=Msg}
#| label: fig-climRangeVsTau
#| fig-width: 9
#| fig-height: 6
#| fig-cap: "Climate breadth in function of climate range size. The higher the climate range size, the more climate conditions the species experienced."
# function to get range distribution from quantile extremes
get_climateRange <- function(
var,
prob_min = 0.01,
prob_max = 0.99,
narm = TRUE
){
min_max = quantile(var, probs = c(prob_min, prob_max), na.rm = narm)
return( min_max[2] - min_max[1] )
}
treeData |>
# mutate(
# bio_01_mean_nat = unscaleClim(bio_01_mean_scl, 'temp'),
# bio_12_mean_nat = unscaleClim(bio_12_mean_scl, 'prec')
# ) |>
group_by(species_id) |>
summarise(
across(contains('_scl'), get_climateRange)
) |>
rename(
temp = bio_01_mean_scl,
prec = bio_12_mean_scl
) |>
pivot_longer(
cols = c(temp, prec),
names_to = 'clim',
values_to = 'clim_val'
) ->
sp_range
pars_growth |>
group_by(species_id) |>
mutate(
iter = 1:n(),
temp_growth = tau_temp,
prec_growth = tau_prec
) |>
ungroup() |>
select(species_id, iter, temp_growth, prec_growth) |>
left_join(
pars_survival |>
group_by(species_id) |>
mutate(
iter = 1:n(),
temp_survival = tau_temp,
prec_survival = tau_prec
) |>
ungroup() |>
select(species_id, iter, temp_survival, prec_survival)
) |>
left_join(
pars_recruit |>
group_by(species_id) |>
mutate(
iter = 1:n(),
temp_recruitment = tau_temp,
prec_recruitment = tau_prec
) |>
ungroup() |>
select(species_id, iter, temp_recruitment, prec_recruitment)
) |>
pivot_longer(
cols = c(contains('temp'), contains('prec')),
names_to = c('clim', 'vr'),
names_sep = '_'
) |>
left_join(sp_range) |>
left_join(
spIds,
by = c('species_id' = 'species_id_old')
) |>
mutate(
clim = case_match(clim, 'temp' ~ 'Mean annual temperature',
'prec' ~ 'Mean annual precipitation')
) |>
ggplot() +
aes(clim_val, value) +
aes(color = vr) +
facet_grid(clim~vr) +
# aes(tau_temp, fct_reorder(species_name, tau_temp)) +
stat_pointinterval(
alpha = 0.8
) +
scale_color_manual(
values = c('#018571', '#dfc27d', '#a6611a')
) +
geom_smooth(method = 'lm') +
theme_classic() +
xlab('Climate range') +
ylab(expression(tau)) +
labs(color = '') +
theme(legend.position = 'top')
```
## Conditional effect at the lower and upper climate range
To have an integral understanding of the climate effect across the range of the species, we computed the effect size of each climate variable on each vital rate for both the minimum and maximum observed climate conditions.
Effect size ranges from zero (no effect) to 1 (maximum negative effect).
We defined each species' minimum and maximum climate conditions separately using the 0.1 and 99% quantile probability distributions.
In @fig-climEffectSize, we changed the signal of the lower minimum condition to negative to better visualize both lower and upper ranges but consider the absolute value.
```{r climate_prepareRangePerform,echo=Echo,eval=Eval,cache=Cache,warning=Warng,message=Msg}
treeData |>
group_by(species_id) |>
summarise(
temp_max = quantile(bio_01_mean_scl, prob = 0.99, na.rm = TRUE),
temp_min = quantile(bio_01_mean_scl, prob = 0.01, na.rm = TRUE),
prec_max = quantile(bio_12_mean_scl, prob = 0.99, na.rm = TRUE),
prec_min = quantile(bio_12_mean_scl, prob = 0.01, na.rm = TRUE)
) ->
sp_range
# climate effect:
# 0 means no effect of climate
# 1 means that vital rate was reduced to zero at this climate
clim_effect <- function(x_pos, optimal, tau)
return( 1 - exp(-tau * (x_pos - optimal)^2) )
pars_growth |>
group_by(species_id) |>
mutate(iter = row_number()) |>
ungroup() |>
left_join(sp_range) |>
mutate(
across(contains('temp_'), ~ clim_effect(.x, optimal_temp, tau_temp)),
across(contains('prec_'), ~ clim_effect(.x, optimal_prec, tau_prec))
) |>
select(species_id, contains('temp_'), contains('prec_')) ->
growth_borderEffect
pars_survival |>
group_by(species_id) |>
mutate(iter = row_number()) |>
ungroup() |>
left_join(sp_range) |>
mutate(
across(contains('temp_'), ~ clim_effect(.x, optimal_temp, tau_temp)),
across(contains('prec_'), ~ clim_effect(.x, optimal_prec, tau_prec))
) |>
select(species_id, contains('temp_'), contains('prec_')) ->
survival_borderEffect
pars_recruit |>
group_by(species_id) |>
mutate(iter = row_number()) |>
ungroup() |>
left_join(sp_range) |>
mutate(
across(contains('temp_'), ~ clim_effect(.x, optimal_temp, tau_temp)),
across(contains('prec_'), ~ clim_effect(.x, optimal_prec, tau_prec))
) |>
select(species_id, contains('temp_'), contains('prec_')) ->
recruitment_borderEffect
```
```{r climate_figBorderGrowthMortality,echo=Echo,eval=Eval,cache=Cache,warning=Warng,message=Msg}
#| label: fig-climEffectSize
#| fig-width: 9
#| fig-height: 11
#| fig-cap: "Mean annual temperature and mean annual precipitation effect size on growth, recruitment, and survival vital rates between the minimum and maximum observed climate condition. Note that the effect size ranges from 0 (no effect) to 1 (maximum negative effect), and the effect at the lower climate condition was converted to negative for visual clarity."
# fig overall performance across climate and vital rates
growth_borderEffect |>
pivot_longer(
cols = !species_id,
names_to = c('clim', 'range'),
names_sep = '_'
) |>
bind_cols(vr = 'growth') |>
bind_rows(
survival_borderEffect |>
pivot_longer(
cols = !species_id,
names_to = c('clim', 'range'),
names_sep = '_'
) |>
bind_cols(vr = 'survival')
) |>
bind_rows(
recruitment_borderEffect |>
pivot_longer(
cols = !species_id,
names_to = c('clim', 'range'),
names_sep = '_'
) |>
bind_cols(vr = 'recruitment')
) |>
left_join(
spIds,
by = c('species_id' = 'species_id_old')
) |>
mutate(
value = ifelse(range == 'min', -value, value),
range = case_match(
range,
'max' ~ 'Upper',
'min' ~ 'Lower'
),
clim = case_match(
clim,
'temp' ~ 'Temperature',
'prec' ~ 'Precipitation'
)
) |>
ggplot() +
aes(value, species_name) +
aes(color = as.factor(range)) +
facet_grid(clim~vr) +
stat_pointinterval() +
theme_classic() +
scale_color_manual(
values = c('#fc8d59', '#91bfdb')
) +
geom_vline(xintercept = 0, alpha = 0.8) +
theme(
axis.text.y = element_text(face = "italic"),
legend.position = 'top'
) +
xlab('Marginal efect at the lower (left) and upper (rigth) climate range') +
ylab('') +
labs(color = 'Climate\nrange position')
```
```{r climate_figBorderGrowthMortalitySumm,echo=Echo,eval=Eval,cache=Cache,warning=Warng,message=Msg}
#| label: fig-climEffectSizeSunn
#| fig-width: 8
#| fig-height: 5
#| fig-cap: "Summary between the species of the climate effect size for each vital rate between the minimum and maximum observed climate condition."
growth_borderEffect |>
pivot_longer(
cols = !species_id,
names_to = c('clim', 'range'),
names_sep = '_'
) |>
bind_cols(vr = 'growth') |>
bind_rows(
survival_borderEffect |>
pivot_longer(
cols = !species_id,
names_to = c('clim', 'range'),
names_sep = '_'
) |>
bind_cols(vr = 'survival')
) |>
bind_rows(
recruitment_borderEffect |>
pivot_longer(
cols = !species_id,
names_to = c('clim', 'range'),
names_sep = '_'
) |>
bind_cols(vr = 'recruitment')
) |>
mutate(
clim = case_match(clim, 'temp' ~ 'Mean annual temperature', 'prec' ~ 'Mean annual precipitation'),
range = case_match(range, 'max' ~ 'Upper limit', 'min' ~ 'Lower limit')
) |>
group_by(species_id, vr, clim, range) |>
reframe(value = mean(value)) |>
ggplot() +
aes(range, -value) +
aes(fill = vr) +
facet_wrap(~clim) +
geom_boxplot() +
scale_fill_manual(
values = c('#018571', '#dfc27d', '#a6611a')
) +
theme_classic() +
geom_hline(yintercept = 0, alpha = 0.8) +
xlab('') +
ylab('Effect size at climate ranges') +
labs(fill = '')
```
<!--
In @fig-latVsEffect, we compare the climate effect at the lower observed range with the average latitude distribution among all observations of the species.
We have tested multiple combinations of lower/upper and temperature/precipitation. This was the one where there was a clear pattern: species more distributed towards the poles are the ones whose growth rate is more affected by temperature at the lower border. -->
```{r climate_effctSizeRangeSize2,echo=Echo,eval=FALSE,cache=Cache,warning=Warng,message=Msg}
#| label: fig-latVsEffect
#| fig-width: 9
#| fig-height: 5
#| fig-cap: "Effect size of annual mean temperature at lower observed range in function of the median latitudinal position of species."
survival_borderEffect |>
pivot_longer(
cols = !species_id,
names_to = c('clim', 'range'),
names_sep = '_'
) |>
filter(clim == 'temp' & range == 'min') |>
group_by(species_id) |>
reframe(value = mean(value)) |>
left_join(
treeData |>
filter(!is.na(latitude)) |>
group_by(species_id) |>
reframe(
temp = median(latitude)
)
) |>
bind_cols(vr = 'survival') |>
bind_rows(
growth_borderEffect |>
pivot_longer(
cols = !species_id,
names_to = c('clim', 'range'),
names_sep = '_'
) |>
filter(clim == 'temp' & range == 'min') |>
group_by(species_id) |>
reframe(value = mean(value)) |>
left_join(
treeData |>
filter(!is.na(latitude)) |>
group_by(species_id) |>
reframe(
temp = median(latitude)
)
) |>
bind_cols(vr = 'growth')
) |>
bind_rows(
recruitment_borderEffect |>
pivot_longer(
cols = !species_id,
names_to = c('clim', 'range'),
names_sep = '_'
) |>
filter(clim == 'temp' & range == 'min') |>
group_by(species_id) |>
reframe(value = mean(value)) |>
left_join(
treeData |>
filter(!is.na(latitude)) |>
group_by(species_id) |>
reframe(
temp = median(latitude)
)
) |>
bind_cols(vr = 'recruitment')
) |>
left_join(
spIds,
by = c('species_id' = 'species_id_old')
) ->
parsGrowthSurv_mean
survival_borderEffect |>
pivot_longer(
cols = !species_id,
names_to = c('clim', 'range'),
names_sep = '_'
) |>
bind_cols(vr = 'survival') |>
bind_rows(
growth_borderEffect |>
pivot_longer(
cols = !species_id,
names_to = c('clim', 'range'),
names_sep = '_'
) |>
bind_cols(vr = 'growth')
) |>
bind_rows(
recruitment_borderEffect |>
pivot_longer(
cols = !species_id,
names_to = c('clim', 'range'),
names_sep = '_'
) |>
bind_cols(vr = 'recruitment')
) |>
filter(clim == 'temp' & range == 'min') |>
left_join(
treeData |>
filter(!is.na(latitude)) |>
group_by(species_id) |>
reframe(
temp = median(latitude)