Skip to content

Latest commit

 

History

History
519 lines (306 loc) · 17.3 KB

README.md

File metadata and controls

519 lines (306 loc) · 17.3 KB

README

This README describes the minimal steps that are necessary to get an analysis of selection up and running.

Cite this method Berrio, A., Haygood, R. & Wray, G.A. Identifying branch-specific positive selection throughout the regulatory genome using an appropriate proxy neutral. BMC Genomics 21, 359 (2020). https://doi.org/10.1186/s12864-020-6752-4

What is this repository for?

  • The scripts associated with this walkthrough can be used to pulldown multiple alignments and analyse positive selection in specific branches.
  • Version 2.0

How do I get set up?

  • Dependencies:
  1. PHAST
  2. HYPHY
  3. BEDTOOLS
  4. BIOPYTHON
  5. PYTHON 2.7
  6. Unix/linux environment
  7. Slurm (optional)

Selection test walkthrough

This walkthough can be used to test for positive selection in regulatory regions from data obtained from functional genomic experiments such as ATAC-seq or ChIP-seq.

** note: For simplicity, you can download the non-functional regions 'refmasked2.tar.gz', the unmasked maf alignemtns as 'unmasked1.tar.gz'. After downloading, just decompress with tar -xzvf and these directories are ready to use for making either local, global concatenated reference sequences, and to extract query regions

** if you download these files, start in step 4 ###

1 Download genomewide alignments

Download hg19 multiZ alignment from UCSC (100way multiple alignment)

for chr in chr1 chr2 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chr10 chr11 chr12 chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr20 chr21 chr22 chrX chrY; 
do wget --timestamping 'http://hgdownload.cse.ucsc.edu/goldenPath/hg19/multiz100way/maf/'$chr.maf.gz; done

or for hg38:

for chr in chr1 chr2 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chr10 chr11 chr12 chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr20 chr21 chr22 chrX chrY; 
do wget --timestamping 'http://hgdownload.cse.ucsc.edu/goldenPath/hg38/multiz100way/maf/'$chr.maf.gz; done

2 Download Referennce genome

Download the hg19 human assembly reference for each MAF from UCSC

for chr in chr1 chr2 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chr10 chr11 chr12 chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr20 chr21 chr22 chrX chrY; 
do wget --timestamping 'ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/chromosomes/'$chr.fa.gz; done ```

or for hg38:

for chr in chr1 chr2 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chr10 chr11 chr12 chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr20 chr21 chr22 chrX chrY; 
do wget --timestamping 'ftp://hgdownload.cse.ucsc.edu/goldenPath/hg38/chromosomes/'$chr.fa.gz; done ```

note: for the originl identification of NFRs, we masked the maf and human reference using known annotations. The following link shows how to mask the genome with different features. https://github.com/wodanaz/adaptiPhy/blob/master/Masking_MAF.md

3 Subset the 100-way genome-wide alignment for queries

To extract a smaller set of MAF files to use as query. This should correspond to the species of interest. In this case: human, chimp, gorilla, orangutan, macaque

mkdir -p primates
for file in chr*.maf;  
do root=`basename $file .maf`;
maf_parse $file --seqs hg19,ponAbe2,gorGor3,panTro4,rheMac3 >  primates/$root.primates.maf; 
done

Note: Save in a directory called primate

and for hg38:

mkdir -p primates
for file in chr*.maf;  
do root=`basename $file .maf`;
maf_parse $file --seqs hg38,ponAbe2,gorGor3,panTro4,rheMac3 >  primates/$root.primates.maf; 
done

Note: Save in a directory called primate

4 Extract query alignments

Now, we can pull down query alignments into multiple fasta files according to your features directory. This is the list of locations of to scan for selection

mkdir features
for chr in chr1 chr2 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chr10 chr11 chr12 chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr20 chr21 chr22 chrX chrY ; 
	do grep -w $chr yourfeatures.bed  | awk '{print $1 "\t" $2 "\t" $3 }' | sort -k1,1 -k2,2 -V >  features/$chr.feat.bed; 
done

To generate alignments for the query regions, please make sure the names and extention of your maf files in the primate directory correspond to following:

mkdir query
cd /your/directory/with/unmasked/maf/files


for chr in chr1 chr2 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chr10 chr11 chr12 chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr20 chr21 chr22 chrX chrY;
do msa_split $chr.maf --refseq $chr.fa --gap-strip ANY -q --in-format MAF --features /your/test/directory/features/$chr.feat.bed --for-features 
--out-root/your/test/directory/query/$chr; 
done

HyPhy doesn't perform well with missing dashes, ambiguities or missing sequence. To remove these sequence features please run the included biopython script

Note: Modify loading biopython according to your cluster needs

Note: if you decide to run local tests of selection, the procedure is a bit different. Please follow the pipeline in:

https://github.com/wodanaz/adaptiPhy/blob/master/Local_Reference.md

for file in *fa; do echo $file >> all.list;done


module load Anaconda/1.9.2-fasrc01
python prunning.py 

Once this is done, please generate a new list of fasta files

for file in *prunned; do echo $file >> all.prunned.list;done

Next, remove anything alignment smaller than 250 bp. Modify if necessary

module load Anaconda/1.9.2-fasrc01
python filtering.py 

6 Concatenate NFRs for neutral reference

Now, we need to make a putatively neutral reference

cat query/goodalignments.txt > queries.list

cp queries.list /your/path/to/neutral/alignments/from/masked/fasta

cd  /your/path/to/neutral/alignments/from/masked/fasta

Run these commands to generate neutral reference sequences. But make sure you have a set of putatively neutral sequences. Please refer to findingneutrality.md (https://github.com/wodanaz/adaptiPhy/blob/master/findingneutrality.md) in order to do this.

module load Anaconda/1.9.2-fasrc01
python DictGen.py
for file in `cat queries.list`; do echo $file.ref >> ref.tab; done

Move alignments to your reference directory

for file in `cat ref.tab`; do mv $file /your/path/to/reference/alignments ; done

note: python adds a description that should be cleaned because hyphy will experience troubles at running. To do that, please run

for file in `cat ref.tab`; do root=`basename $file .fa.prunned.ref`; 
awk '{if($1 ~ /^>/){split($1,a,"\t"); print a[1]}else{print}}' $file > $root.ref.fa; done
for file in `cat  ref.tab`; do echo $file >> ref2.list; done
awk -F"." '{print $1 "." $2 }' ref2.list > ref.list


for file in `cat ref.tab`; do rm $file; done

Run batch generator but first, edit the file by adding the species of interest in the branches line, and the location of the the ref and queries, also add the corresponding tree

python bfgenerator_global.py ref.list

Make a list of all batch files that have been generated for the alternative and the null models. This can be split for runs in parallel

for file in *hg19.null.bf; do echo $file >> null.hg19.list; done
for file in *hg19.alt.bf; do echo $file >> alt.hg19.list; done

If you have thousands of alignments to run. Please use this biopython script to generate a shell script to create a set of launchers to hyphy

module load Anaconda/1.9.2-fasrc01
python shgenerator.py

Alternatively:

for file in `cat null.hg19.list`; do
	root=`basename $file .hg19.null.bf`;
	HYPHYMP $file > HYPHY/$root.hg19.null.out;
done #exit nano ctrl+O ENTER ctrl+x

7 Run adaptiPhy using HyPhy

Now, we are ready to run hyphy

mkdir HYPHY
mkdir res

module load hyphy
for file in hyphy*sh ; do sbatch $file ; done

To extract P-values for each LRT, we need to pull down each likelihood from the null and alternative tests and construct a table.

for file in *hg19.null.res; do echo $file >>null.hg19.log; done;
for file in *hg19.alt.res; do echo $file >>alt.hg19.log; done;

for filename in `cat alt.hg19.log`; do grep -H "BEST LOG-L:" $filename >> alt.hg19.tab; done;
for filename in `cat null.hg19.log`; do grep -H "BEST LOG-L:" $filename >> null.hg19.tab; done;

for file in *panTro4.null.res; do echo $file >>null.panTro4.log; done;
for file in *panTro4.alt.res; do echo $file >> alt.panTro4.log; done;

for filename in `cat alt.panTro4.log`; do grep -H "BEST LOG-L:" $filename >> alt.panTro4.tab; done;
for filename in `cat null.panTro4.log`; do grep -H "BEST LOG-L:" $filename >> null.panTro4.tab; done;

Consolidating tables for null and alternative models

awk '{print $1 "\t" $3}' null.hg19.tab | sort -k1,1 -V  > nulls.hg19.tab
awk '{print $1 "\t" $3}' alt.hg19.tab | sort -k1,1 -V > alts.hg19.tab

awk '{print $1 "\t" $3}' null.panTro4.tab | sort -k1,1 -V  > nulls.panTro4.tab
awk '{print $1 "\t" $3}' alt.panTro4.tab | sort -k1,1 -V > alts.panTro4.tab
awk -F"." '{print $1 ":" $2 "\t" $3 }'  nulls.hg19.tab > col1.hg19.tab
paste col1.hg19.tab nulls.hg19.tab  | awk '{print $1 "\t" $2 "\t" $4   }' > lnulls.hg19.tab
paste lnulls.hg19.tab alts.hg19.tab | awk '{print $1 "\t" $2  "\t" $3 "\t" $5  }' |  sort -k1,1 -V > likelihoods.hg19.tab
 
awk -F"." '{print $1 ":" $2 "\t" $3 }'  nulls.panTro4.tab > col1.panTro4.tab
paste col1.panTro4.tab nulls.panTro4.tab  | awk '{print $1 "\t" $2 "\t" $4   }'> lnulls.panTro4.tab
paste lnulls.panTro4.tab alts.panTro4.tab | awk '{print $1 "\t" $2  "\t" $3 "\t" $5  }' |  sort -k1,1 -V > likelihoods.panTro4.tab
 


cat likelihoods.hg19.tab likelihoods.panTro4.tab  |  sort -k1,1 -V | sed 1i"chromosome\tbranch\tlnull\tlalt" > likelihoods.tab

Here we should have a table with four columns of data (Genomic region, branch, null and alternative likelihoods). Next, we will add zeta and other sequence features

To get the p-value using a chi^2 function in R. Please execute LRT.R

Rscript LRT.R

This will create a new table containing the P values. This file is called "likelihoods.pvals.tab"

awk '{ print $1 "\t" $2 "\t" $3 "\t" $4 "\t" $5 }' likelihoods.pvals.tab | sort -k1,1 -V | sed 1i"chromosome\tbranch\tlnull\tlalt\tpval"  > P_value.data

To calculate zeta we compute substitution rates at each branch of the tree in both query and its corresponding reference.

For queries (modify according to the species in your tree):

cd query
mkdir -p MODELS_HKY85
for file in `cat goodalignments.txt` ; 
do root=`basename $file .ref.fa`; 
phyloFit $file --tree "(taxon0,(taxon1,(taxon2,(taxon3, taxon4))))" --subst-mod HKY85 --msa-format FASTA --out-root MODELS_HKY85/$root; 
done 

For the reference:

ls *.ref.fa > ref.fa.list
cd ref
mkdir -p MODELS_HKY85


for file in `cat ref.fa.list` ; 
do root=`basename $file .fa`; 
phyloFit $file --tree "(taxon0,(taxon1,(taxon2,(taxon3, taxon4))))" --subst-mod HKY85 --msa-format FASTA --out-root MODELS_HKY85/$root; 
done 

When done, we need to transform tables in a format we can use:

In the query directory:

for filename in *.mod; do grep -H "TREE:" $filename; done > output.hky85.txt
cat output.hky85.txt | awk -F":" '{print $1 "\t" $4 "\t" $5 "\t" $6 "\t" $7 "\t" $8 "\t" $9 "\t" $10 "\t" $11  }' | \
awk -F"," '{print $1 "\t" $2  "\t" $3 "\t" $4 "\t" $5 "\t" $6 "\t" $7 "\t" $8 "\t" $9 "\t" $10  }'  | \
awk -F")" '{print $1 "\t" $2  "\t" $3 "\t" $4 "\t" $5 "\t" $6 "\t" $7 "\t" $8 "\t" $9 "\t" $10  }'  | \
awk '{print $1 "\t" $2 "\t" $4 "\t" $6 "\t" $8 "\t" $10 "\t" $11 "\t" $12 "\t" $13 }'  > BranchLenghts.tab

# Let's stop here for a while.... we need to check the table and make sure it's looking good

# we need to further modify column 1 alone -> I don't like the dots, it would be nicer to have chromosome and location in separate columns

awk -F"." '{print $1 ":" $2  }' BranchLenghts.tab > chr_pos.tab

paste chr_pos.tab BranchLenghts.tab  | column -s '\t' -t | awk '{print $1 "\t" $3 "\t" $4 "\t" $5 "\t" $6 "\t" $7 "\t" $8 "\t" $9 "\t" $10 }'  > Branches.tab


sed 1i"chromosome\trheMac3\tponAbe2\tgorGor3\tpanTro4\thg19\tPanHomo\tPanHomoGor\tPanHomoGorPon" Branches.tab > Q.hky85.Branches.tab

In the Reference directory

for filename in *.mod; do grep -H "TREE:" $filename; done > output.hky85.txt
cat output.hky85.txt | awk -F":" '{print $1 "\t" $4 "\t" $5 "\t" $6 "\t" $7 "\t" $8 "\t" $9 "\t" $10 "\t" $11  }' | \
awk -F"," '{print $1 "\t" $2  "\t" $3 "\t" $4 "\t" $5 "\t" $6 "\t" $7 "\t" $8 "\t" $9 "\t" $10  }'  | \
awk -F")" '{print $1 "\t" $2  "\t" $3 "\t" $4 "\t" $5 "\t" $6 "\t" $7 "\t" $8 "\t" $9 "\t" $10  }'  | \
awk '{print $1 "\t" $2 "\t" $4 "\t" $6 "\t" $8 "\t" $10 "\t" $11 "\t" $12 "\t" $13 }'  > BranchLenghts.tab
# Let's stop here for a while.... we need to check the table and make sure it's looking good

# we need to further modify column 1 alone -> I don't like the dots, it would be nicer to have chromosome and location in separate columns

awk -F"." '{print $1 ":" $2  }' BranchLenghts.tab > chr_pos.tab

paste chr_pos.tab BranchLenghts.tab  | column -s '\t' -t | awk '{print $1 "\t" $3 "\t" $4 "\t" $5 "\t" $6 "\t" $7 "\t" $8 "\t" $9 "\t" $10 }'  > Branches.tab


sed 1i"chromosome\trheMac3\tponAbe2\tgorGor3\tpanTro4\thg19\tPanHomo\tPanHomoGor\tPanHomoGorPon" Branches.tab > R.hky85.Branches.tab

Next, copy these two results in the main directory to merge t

cp query/MODELS_HKY85/Q.hky85.Branches.tab .
cp ref/MODELS_HKY85/R.hky85.Branches.tab .


wc -l Q.hky85.Branches.tab
wc -l R.hky85.Branches.tab



sed -i -e "1d" Q.hky85.Branches.tab
sed -i -e "1d" R.hky85.Branches.tab



sort Q.hky85.Branches.tab -k1,1 -V > Q.hky85.Branches.sorted.tab
sort R.hky85.Branches.tab -k1,1 -V > R.hky85.Branches.sorted.tab

awk '{print $1}' Q.hky85.Branches.sorted.tab | awk -F":" '{print $1 "\t" $2 }' | awk -F"-" '{print $1 "\t" $2 "\t" $3}' > Q.hky85.bed
awk '{print $1}' R.hky85.Branches.sorted.tab | awk -F":" '{print $1 "\t" $2 }'  | awk -F"-" '{print $1 "\t" $2 "\t" $3}' > R.hky85.bed


paste Q.hky85.bed Q.hky85.Branches.sorted.tab | column -s '\t' -t | awk '{print $1 "\t" $2 "\t" $3 "\t" $9 }' > Q.hky85.hg19.bed # human
paste R.hky85.bed R.hky85.Branches.sorted.tab | column -s '\t' -t | awk '{print $1 "\t" $2 "\t" $3 "\t" $9 }' > R.hky85.hg19.bed # human

paste Q.hky85.bed Q.hky85.Branches.sorted.tab | column -s '\t' -t | awk '{print $1 "\t" $2 "\t" $3 "\t" $8 }' > Q.hky85.panTro4.bed # chimp
paste R.hky85.bed R.hky85.Branches.sorted.tab | column -s '\t' -t | awk '{print $1 "\t" $2 "\t" $3 "\t" $8 }' > R.hky85.panTro4.bed # chimp





join -t $'\t' -j 1 -o 0 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9  Q.hky85.Branches.sorted.tab R.hky85.Branches.sorted.tab  > join_trans.tab


awk '{ rate1 = $6 / $14 ; print $1 "\t" $6 "\t"  $14  "\t" rate1 "\t" "hg19" }' join_trans.tab  > 	PhyloFit.hg19.tab
awk '{  rate2 = $5 / $13 ; print $1 "\t" $5 "\t"  $13  "\t" rate2 "\t" "panTro4"  }' join_trans.tab  > 	PhyloFit.panTro4.tab


cat PhyloFit.hg19.tab PhyloFit.panTro4.tab  |  sort -k1,1 -k5 -V | awk '{print $1 "\t" $4 "\t" $5 }'  | sed 1i"chromosome\tRatioPhyloFit\tbranch" > PhyloFit.data

To build consolidated table I prefer to use R to merge tables by column

module load R
R

data_pval = as.data.frame(read.table("P_value.data", header = F)) # read tab file 
head(data_pval)
colnames(data_pval) <- c("chromosome", "branch", "lnull", "lalt", "pval")
rates = as.data.frame(read.table("PhyloFit.data", header = T)) # read tab file   
head(rates)

selection.data <- merge(data_pval, rates, by= c("chromosome", "branch"), suffixes = c(".human",".chimp"))
selection.data$lnull <- NULL
selection.data$lalt <- NULL
write.table(selection.data, file ="selection.tab.data", row.names=F, col.names=T, quote=F) 



q()

A shortcut to transform the previous table and eliminate the branch column.

grep 'hg19' selection.tab.data | awk  '{ print $1 "\t" $2 "\t" $3 "\t" $4 }' > selection.hg19.data
grep 'panTro4' selection.tab.data | awk  '{ print $1 "\t" $2 "\t" $3 "\t" $4 }' > selection.panTro4.data
selection_hg19 = as.data.frame(read.table("selection.hg19.data", header = F)) # read tab file 
selection_pantro4 = as.data.frame(read.table("selection.panTro4.data", header = F)) # read tab file 

selection.data <- merge(selection_hg19, selection_pantro4, by= "V1", suffixes = c(".human",".chimp"))

selection.data$V2.human <- NULL     # to remove branch column
selection.data$$V2.chimp <- NULL

colnames(selection.data) <- c('chromosome', 'pval.human', 'zeta.human', 'pval.chimp', 'zeta.chimp')


write.table(selection.data, file ="selection.data", row.names=F, col.names=T, quote=F) 


q()

You can use a similar method to add any other sequence feature of interest. Such as: gene names, distance from closest TSS, CG content, etc.

Congratulations!! Now you are ready to download this table to visualize and analyse your selection data.

Who do I talk to?

  • Please contact me at [email protected]

  • Other community or team contact: Greg Wray gwray at duke.edu Ralph Haygood ralph at ralphhaygood.org

#This repository also contains scripts that can be used to analyse sequence data

GC_content.py is a script that calculates GC content in the query sequences in the human and chimpanzee branches, as well, as the mean accross all branches. It requires biopython.

module load Anaconda/1.9.2-fasrc01
python GC_content.py