-
Notifications
You must be signed in to change notification settings - Fork 65
/
Copy pathtest_conv.py
96 lines (75 loc) · 2.75 KB
/
test_conv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import tensor.Variable as var
import tensor.Operator as op
# from layers.base_conv import Conv2D
# from layers.pooling import MaxPooling
# from layers.fc import FullyConnect
# from layers.relu import Relu
# from layers.softmax import Softmax
# import cv2
import numpy as np
# img = cv2.imread('layers/test.jpg')
# img = img[np.newaxis, :]
e=1e-3
a = var.Variable((1, 128, 128, 3), 'a')
b = var.Variable((1, 128, 128, 3), 'b')
b.data = a.data.copy()
a.data[0,0,0,1] += e
b.data[0,0,0,1] -= e
# label = var.Variable([1, 1], 'label')
# import random
# label.data = np.array([random.randint(1,9)])
# label.data = label.data.astype(int)
import numpy as np
conv1_out = op.Conv2D((3, 3, 3, 3), input_variable=a, name='conv1',padding='VALID').output_variables
conv2_out = op.Conv2D((3, 3, 3, 3), input_variable=b, name='conv2',padding='VALID').output_variables
conv1 = var.GLOBAL_VARIABLE_SCOPE['conv1']
conv2 = var.GLOBAL_VARIABLE_SCOPE['conv2']
var.GLOBAL_VARIABLE_SCOPE['conv1'].weights.data = var.GLOBAL_VARIABLE_SCOPE['conv2'].weights.data
var.GLOBAL_VARIABLE_SCOPE['conv1'].bias.data = var.GLOBAL_VARIABLE_SCOPE['conv2'].bias.data
# print conv1.weights.data - conv2.weights.data
# print conv1_out.eval()-conv2_out.eval()
conv1_out.eval()
conv1_out.diff.data = (np.ones(conv1_out.diff.shape))
print a.wait_bp, conv1.wait_forward
conv2_out.eval()
conv2_out.diff.data = (np.ones(conv1_out.diff.shape))
print b.wait_bp, conv2.wait_forward
# print a.diff_eval()[0,0,0,1]
# print
# relu1_out = op.Relu(input_variable=conv1_out, name='relu1').output_variables
# pool1_out = op.MaxPooling(ksize=2, input_variable=relu1_out, name='pool1').output_variables
# fc1_out = op.FullyConnect(output_num=10, input_variable=pool1_out, name='fc1').output_variables
# sf_out = op.SoftmaxLoss(predict=fc1_out,label=label,name='sf').loss
#
# new_conv1 = op.GLOBAL_VARIABLE_SCOPE['conv1']
# new_fc1 = op.GLOBAL_VARIABLE_SCOPE['fc1']
# conv1 = Conv2D([1, 128, 128, 3], 3, 3, 1,method='VALID')
# relu1 = Relu(conv1.output_shape)
# pool1 = MaxPooling(conv1.output_shape)
# fc1 = FullyConnect(pool1.output_shape,10)
# sf = Softmax(fc1.output_shape)
#
# conv1.weights = new_conv1.weights.data
# conv1.bias = new_conv1.bias.data
# fc1.weights = new_fc1.weights.data
# fc1.bias = new_fc1.bias.data
#
#
# out = sf.cal_loss(fc1.forward(pool1.forward(relu1.forward(conv1.forward(img)))), label.data)
# sf.gradient()
# eta = conv1.gradient(relu1.gradient(pool1.gradient(fc1.gradient(sf.eta))))
#
# new train op
# give value and forward
# a.data = img
# new_out = sf_out.eval()
#
# # give diff and backward
# new_eta = a.diff_eval()
# print new_eta-eta
#
#
# for k in var.GLOBAL_VARIABLE_SCOPE:
# s = var.GLOBAL_VARIABLE_SCOPE[k]
# if isinstance(s,var.Variable) and s.learnable:
# print s.name, s.parent, s.child