forked from malteschade/Quantum-Wave-Equation-Solver
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
78 lines (66 loc) · 3.28 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
{Main module for running the quantum 1D elastic wave equation solver.}
{
Copyright (C) [2023] [Malte Schade]
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
}
"""
# -------- IMPORTS --------
# Own modules
from simulation.experiment import ForwardExperiment1D
from utility.distributions import (spike, ricker, gaussian, raised_cosine,
sinc, homogeneous, exponential, polynomial)
# -------- FUNCTIONS --------
def main() -> None:
"""
Runs the quantum 1D elastic wave equation solver.
"""
# Create experiment
experiment = ForwardExperiment1D(verbose=2)
# Set Experiment Parameters
nx = 7
parameters = {
'dx': 1, # Grid spacing
'nx': nx, # Number of grid points
'dt': 0.0001, # Time stepping
'nt': 19, # Number of time steps
'order': 1, # Finite-difference order
'bcs': {'left': 'DBC', 'right': 'DBC'}, # Boundary conditions
'mu': raised_cosine(3e10, nx+1, nx, 6, 1e10), # Elastic modulus distribution
'rho': raised_cosine(2e3, nx, nx-1, 6, 2e3), # Density distribution
'u': spike(1, nx, nx//2+1), # Initial positions
'v': homogeneous(0, nx), # Initial velocities
'backend': {
'synthesis': 'MatrixExponential', # Time Evolution Synthesis Method
'batch_size': 100, # Circuit Batch Size
'fitter': 'cvxpy_gaussian', # State Tomography fitter
'backend': 'ibm_brisbane', # Cloud backend name
'shots': 1000, # Number of circuit samples
'optimization': 3, # Circuit optimization level
'resilience': 1, # Circuit resilience level
'seed': 0, # Transpilation seed
'local_transpilation': False, # Local transpilation
'method': 'statevector', # Classical simulation method
'fake': None, # Fake backend model (Currently not supported)
}
}
# Define solvers
experiment.add_solver('ode', **parameters)
experiment.add_solver('exp', **parameters)
experiment.add_solver('cloud', **parameters)
# Run experiment
_ = experiment.run()
# -------- SCRIPT --------
if __name__ == '__main__':
main()