-
Notifications
You must be signed in to change notification settings - Fork 1.9k
/
Copy pathbleu_score.py
33 lines (23 loc) · 1.13 KB
/
bleu_score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# -*- coding: utf-8 -*-
"""BLEU Score.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1dSsETrstp-EEGMX46nc-m_jw00nzkaNZ
"""
from nltk.translate.bleu_score import sentence_bleu, corpus_bleu
# Prepare the reference sentences
reference1 = ['I', 'love', 'eating', 'ice', 'cream']
reference2 = ['I', 'enjoy', 'eating', 'ice', 'cream']
# Prepare the candidate sentence
translation = ['I', 'love', 'eating', 'ice', 'cream']
# Calculate the BLEU score for a single sentence
bleu_score = sentence_bleu([reference1, reference2], translation)
print("BLEU Score: ", bleu_score)
# Prepare the reference sentences and candidate sentences for multiple translations
references = [['I', 'love', 'eating', 'ice', 'cream'], ['He', 'enjoys', 'eating', 'cake']]
translations = [['I', 'love', 'eating', 'ice', 'cream'], ['He', 'likes', 'to', 'eat', 'cake']]
# Create a list of reference lists
references_list = [[ref] for ref in references]
# Calculate BLEU score for the entire corpus
bleu_score_corpus = corpus_bleu(references_list, translations)
print("Corpus BLEU Score: ", bleu_score_corpus)