-
Notifications
You must be signed in to change notification settings - Fork 1.9k
/
Copy pathextracting_googletrends_data_pythoncodetutorial.py
67 lines (50 loc) · 1.51 KB
/
extracting_googletrends_data_pythoncodetutorial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# -*- coding: utf-8 -*-
"""Extracting-GoogleTrends-Data_PythonCodeTutorial.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1lMX3VemgcfGpiGNlQJNPyivSXHAVYe6O
"""
# !pip install pytrends
from pytrends.request import TrendReq
import seaborn
# for styling
seaborn.set_style("darkgrid")
# initialize a new Google Trends Request Object
pt = TrendReq(hl="en-US", tz=360)
# set the keyword & timeframe
pt.build_payload(["Python", "Java"], timeframe="all")
# get the interest over time
iot = pt.interest_over_time()
iot
# plot it
iot.plot(figsize=(10, 6))
# get hourly historical interest
data = pt.get_historical_interest(
["data science"],
cat=396,
year_start=2022, month_start=1, day_start=1, hour_start=0,
year_end=2022, month_end=2, day_end=10, hour_end=23,
)
data
# the keyword to extract data
kw = "python"
pt.build_payload([kw], timeframe="all")
# get the interest by country
ibr = pt.interest_by_region("COUNTRY", inc_low_vol=True, inc_geo_code=True)
# sort the countries by interest
ibr[kw].sort_values(ascending=False)
# get related topics of the keyword
rt = pt.related_topics()
rt[kw]["top"]
# get related queries to previous keyword
rq = pt.related_queries()
rq[kw]["top"]
# get suggested searches
pt.suggestions("python")
# another example of suggested searches
pt.suggestions("America")
# trending searches per region
ts = pt.trending_searches(pn="united_kingdom")
ts
# real-time trending searches
pt.realtime_trending_searches()