forked from RolfRolles/HexRaysDeob
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPatternDeobfuscate.cpp
669 lines (574 loc) · 19.8 KB
/
PatternDeobfuscate.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
#include <hexrays.hpp>
#include "HexRaysUtil.hpp"
#include "PatternDeobfuscateUtil.hpp"
#include "Config.hpp"
// Our pattern-based deobfuscation is implemented as an optinsn_t structure,
// which allows us to hook directly into the microcode generation phase and
// perform optimizations automatically, whenever code is decompiled.
struct ObfCompilerOptimizer : public optinsn_t
{
// This function simplifies microinstruction patterns that look like
// either: (x & 1) | (y & 1) ==> (x | y) & 1
// or: (x & 1) ^ (y & 1) ==> (x ^ y) & 1
// Though it may not seem like much of an "obfuscation" or "deobfuscation"
// technique on its own, getting rid of the "&1" terms helps reveal other
// patterns so they can be deobfuscated.
int pat_LogicAnd1(minsn_t *ins)
{
// Only applies to OR / XOR microinstructions
if (ins->opcode != m_or && ins->opcode != m_xor)
return 0;
// Only applies when the operands are results of other
// microinstructions (since, after all, we are expecting them to be
// ANDed by 1, which is represented in terms of a microinstruction
// provider mop_d operand).
if (ins->l.t != mop_d || ins->r.t != mop_d)
return 0;
minsn_t *insLeft, *insRight;
mop_t *opLeft, *opRight;
// Get rid of & 1. bLeft1 is true if there was an &1.
bool bLeft1 = TunnelThroughAnd1(ins->l.d, insLeft, true, &opLeft);
if (!bLeft1)
return 0;
// Same for right-hand side
bool bRight1 = TunnelThroughAnd1(ins->r.d, insRight, true, &opRight);
if (!bRight1)
return 0;
// If we get here, then the pattern matched.
// Move the logical operation (OR or XOR) to the left-hand side,
// with the operands that have the &1 removed.
ins->l.d->opcode = ins->opcode;
ins->l.d->l.swap(*opLeft);
ins->l.d->r.swap(*opRight);
// Change the top-level instruction from OR or XOR to AND, and set the
// right-hand side to the 1-bit constant value 1.
ins->opcode = m_and;
ins->r.make_number(1, 1);
// msg("[I] pat_LogicAnd1\n");
// Return 1 to indicate that we changed the instruction.
return 1;
}
// One of the obfuscation patterns involves a subtraction by 1. In the
// assembly code, this is implemented by something like:
//
// add eax, 2
// add eax, ecx ; or whatever
// sub eax, 3
//
// Usually, Hex-Rays will automatically simplify this to (eax+ecx)-1.
// However, I did experience situations where Hex-Rays still represented
// the decompiled output as 2+(eax+ecx)-3. This function, then, determines
// when Hex-Rays has represented the subtraction as just mentioned. If so,
// it extracts the term that is being subtracted by 1.
bool pat_IsSubBy1(minsn_t *ins, mop_t *&op)
{
// We're looking for x+(y-z), where x and z are numeric
if (ins->opcode != m_add)
return false;
// Extract x and (y-z)
mop_t *opAddNum = NULL, *opAddNonNum = NULL;
if (!ExtractNumAndNonNum(ins, opAddNum, opAddNonNum))
return false;
// Ensure that the purported (y-z) term actually is a subtraction
if (opAddNonNum->t != mop_d || opAddNonNum->d->opcode != m_sub)
return false;
// Extract y and z. I guess technically I shouldn't use
// ExtractNumAndNonNum here since subtraction isn't commutative...
// Call that a bug, but it didn't matter in practice.
mop_t *opSubNum = NULL, *opSubNonNum = NULL;
if (!ExtractNumAndNonNum(opAddNonNum->d, opSubNum, opSubNonNum))
return false;
// Pass y back to the caller
op = opSubNonNum;
// x-z must be -1, or, equivalently, z-x must be 1.
return (opSubNum->nnn->value - opAddNum->nnn->value) == 1LL;
}
// This function performs the following pattern-substitution:
// (x * (x-1)) & 1 ==> 0
int pat_MulSub(minsn_t *andIns)
{
// Topmost term has to be &1. The 1 is not required to be 1-byte large.
minsn_t *ins = andIns;
if (!TunnelThroughAnd1(ins, ins, false))
return 0;
// Looking for multiplication terms
if (ins->opcode != m_mul)
return 0;
// We have two different mechanisms for determining if there is a
// subtraction by 1.
bool bWasSubBy1 = false;
// Ultimately, we need to find thse things:
minsn_t *insSub; // Subtraction instruction x-1
mop_t *opMulNonSub; // Operand of multiply that isn't a subtraction
mop_t *subNonNum; // x from the x-1 instruction
// Try first method for locating subtraction by 1, i.e., simply
// subtraction by the constant number 1.
do
{
// Find the subtraction subterm of the multiplication
if (!ExtractByOpcodeType(ins, m_sub, insSub, opMulNonSub))
break;
mop_t *subNum;
// Find the numeric part of the subtraction. Again, I shouldn't use
// ExtractNumAndNonNum here since subtraction isn't commutative.
if (!ExtractNumAndNonNum(insSub, subNum, subNonNum))
break;
// Ensure that the subtraction amount is 1.
if (subNum->nnn->value != 1)
break;
// Indicate that we successfully found the subtraction.
bWasSubBy1 = true;
} while (0);
// If we didn't find the subtraction, see if we have an add/sub pair
// instead, which totals to subtraction minus one.
if (!bWasSubBy1)
{
// Find the ADD subterm of the multiplication. If this fails, both
// methods failed to find the pattern, so return.
if (!ExtractByOpcodeType(ins, m_add, insSub, opMulNonSub))
return 0;
// Call the previous function to determine whether the ADD
// implements a subtraction by 1.
bWasSubBy1 = pat_IsSubBy1(insSub, subNonNum);
}
// If both methods failed, bail.
if (!bWasSubBy1)
return 0;
// We know we're dealing with (x-1) * y. ensure x==y.
if (!equal_mops_ignore_size(*opMulNonSub, *subNonNum))
return 0;
// If we get here, the pattern matched.
// Replace the whole multiplication instruction by 0.
ins->l.make_number(0, ins->l.size);
#if IDA_SDK_VERSION == 710
andIns->optimize_flat();
#elif IDA_SDK_VERSION >= 720
andIns->optimize_solo();
#endif
// msg("[I] pat_MulSub\n");
return 1;
}
// This function looks tries to replace patterns of the form
// either: (x&y)|(x^y) ==> x|y
// or: (x&y)|(y^x) ==> x|y
int pat_OrViaXorAnd(minsn_t *ins)
{
#if OPTVERBOSE
qstring qIns;
ins->print(&qIns);
msg("Trying to optimize jcc cond: %s\n", qIns.c_str());
#endif
// Looking for OR instructions...
if (ins->opcode != m_or)
return 0;
// ... where one side is a compound XOR, and the other is not ...
minsn_t *xorInsn;
mop_t *nonXorOp;
if (!ExtractByOpcodeType(ins, m_xor, xorInsn, nonXorOp))
return 0;
// .. and the other side is a compound AND ...
if (nonXorOp->t != mop_d || nonXorOp->d->opcode != m_and)
return 0;
// Extract the operands for the AND and XOR terms
mop_t *xorOp1 = &xorInsn->l, *xorOp2 = &xorInsn->r;
mop_t *andOp1 = &nonXorOp->d->l, *andOp2 = &nonXorOp->d->r;
// The operands must be equal
if (!(equal_mops_ignore_size(*xorOp1, *andOp1) && equal_mops_ignore_size(*xorOp2, *andOp2)) ||
(equal_mops_ignore_size(*xorOp1, *andOp2) && equal_mops_ignore_size(*xorOp2, *andOp1)))
return 0;
// Move the operands up to the top-level OR instruction
ins->l.swap(*xorOp1);
ins->r.swap(*xorOp2);
#if IDA_SDK_VERSION == 710
ins->optimize_flat();
#elif IDA_SDK_VERSION >= 720
ins->optimize_solo();
#endif
// msg("[I] pat_OrViaXorAnd\n");
return 1;
}
// This pattern replaces microcode of the form (x|!x), where x is a
// conditional, and !x is its syntactically-negated version, with 1.
int pat_OrNegatedSameCondition(minsn_t *ins)
{
#if OPTVERBOSE
qstring qIns;
ins->print(&qIns);
msg("Trying to optimize jcc cond: %s\n", qIns.c_str());
#endif
// Only applies to (x|y)
if (ins->opcode != m_or)
return 0;
// Only applies when x and y are compound expressions, i.e., results
// of other microcode instructions.
if (ins->l.t != mop_d || ins->r.t != mop_d)
return 0;
// Ensure x and y are syntactically-opposite versions of the same
// conditional.
if (!AreConditionsOpposite(ins->l.d, ins->r.d))
return 0;
// If we get here, the pattern matched. Replace both sides of OR with
// 1, and then call optimize_flat to fold the constants.
ins->l.make_number(1, 1);
ins->r.make_number(1, 1);
#if IDA_SDK_VERSION == 710
ins->optimize_flat();
#elif IDA_SDK_VERSION >= 720
ins->optimize_solo();
#endif
// msg("[I] pat_OrNegatedSameCondition\n");
return 1;
}
// Replace patterns of the form (x&c)|(~x&d) (when c and d are numbers such
// that c == ~d) with x^d.
int pat_OrAndNot(minsn_t *ins)
{
// Looking for OR instructions...
if(ins->opcode != m_or)
return 0;
// ... with compound operands ...
if (ins->l.t != mop_d || ins->r.t != mop_d)
return 0;
minsn_t *lhs1 = ins->l.d;
minsn_t *rhs1 = ins->r.d;
// ... where each operand is an AND ...
if (lhs1->opcode != m_and || rhs1->opcode != m_and)
return 0;
// Extract the numeric and non-numeric operands from both AND terms
mop_t *lhsNum = NULL, *rhsNum = NULL;
mop_t *lhsNonNum = NULL, *rhsNonNum = NULL;
bool bLhsSucc = ExtractNumAndNonNum(lhs1, lhsNum, lhsNonNum);
bool bRhsSucc = ExtractNumAndNonNum(rhs1, rhsNum, rhsNonNum);
// ... both AND terms must have one constant ...
if (!bLhsSucc || !bRhsSucc)
return 0;
// .. both constants have a size, and are the same size ...
if (lhsNum->size == NOSIZE || lhsNum->size != rhsNum->size)
return 0;
// ... and the constants are bitwise inverses of one another ...
if ((lhsNum->nnn->value & rhsNum->nnn->value) != 0)
return 0;
// One of the non-numeric parts must have a binary not (i.e., ~) on it
minsn_t *sourceOfResult = NULL;
mop_t *nonNottedInsn = NULL, *nottedNum = NULL, *nottedInsn = NULL;
// Check the left-hand size for binary not
if (lhsNonNum->t == mop_d && lhsNonNum->d->opcode == m_bnot)
{
// Extract the NOTed term
nottedInsn = &lhsNonNum->d->l;
// Make note of the corresponding constant value
nottedNum = lhsNum;
}
else
nonNottedInsn = lhsNonNum;
// Check the left-hand size for binary not
if (rhsNonNum->t == mop_d && rhsNonNum->d->opcode == m_bnot)
{
// Both sides NOT? Not what we want, return 0
if (nottedInsn != NULL)
return 0;
// Extract the NOTed term
nottedInsn = &rhsNonNum->d->l;
// Make note of the corresponding constant value
nottedNum = rhsNum;
}
else
{
// Neither side has a NOT? Bail
if (nonNottedInsn != NULL)
return 0;
nonNottedInsn = rhsNonNum;
}
// The expression that was NOTed must match the non-NOTed operand
if (!equal_mops_ignore_size(*nottedInsn, *nonNottedInsn))
return 0;
// Okay, all of our conditions matched. Make an XOR(x,d) instruction
ins->opcode = m_xor;
ins->l.swap(*nonNottedInsn);
ins->r.swap(*nottedNum);
// msg("[I] pat_OrAndNot\n");
return 1;
}
// Remove XOR chains with common terms. E.g. x^5^y^6^5^x ==> y^6.
// This uses the XorSimplifier class from PatternDeobfuscateUtil.
int pat_XorChain(minsn_t *ins)
{
if (ins->opcode != m_xor)
return 0;
#if OPTVERBOSE
qstring qInsBefore, qInsAfter;
ins->print(&qInsBefore);
#endif
// Automagically find duplicated expressions and erase them
XorSimplifier xs;
if (!xs.Simplify(ins))
return 0;
#if OPTVERBOSE
ins->print(&qInsAfter);
msg("[I] Optimized XOR from:\n\t%s\nto:\t%s\n", qInsBefore.c_str(), qInsAfter.c_str());
#endif
// msg("[I] pat_XorChain\n");
return 1;
}
// Compare two sets of mop_t * element-by-element. Return true if they match.
bool NonConstSetsMatch(std::set<mop_t *> *s1, std::set<mop_t *> *s2)
{
// Iterate over one set
for (auto eL : *s1)
{
bool bFound = false;
// Iterate over the other set
for (auto eR : *s2)
{
// Compare the element from the first set against the ones in
// the other set.
if (equal_mops_ignore_size(*eL, *eR))
{
bFound = true;
break;
}
}
// If we can't find some element from the first set in the other, we're done
if (!bFound)
return false;
}
// All elements matched
return true;
}
// Compare two sets of mop_t * (number values) element-by-element. There
// should be one value in the larger set that's not in the smaller set.
// Find and return it if that's the case.
mop_t *FindNonCommonConstant(std::set<mop_t *> *smaller, std::set<mop_t *> *bigger)
{
mop_t *noMatch = NULL;
// Iterate through the larger set
for (auto eL : *bigger)
{
bool bFound = false;
// Find each element in the smaller set
for (auto eR : *smaller)
{
if (equal_mops_ignore_size(*eL, *eR))
{
bFound = true;
break;
}
}
// We're looking for one constant in the larger set that isn't
// present in the smaller set.
if (!bFound)
{
// If noMatch was not NULL, then there was more than one
// constant in the larger set that wasn't in the smaller one,
// so return NULL on failure.
if (noMatch != NULL)
return 0;
noMatch = eL;
}
}
// Return the constant from the larger set that wasn't in the smaller
return noMatch;
}
// Matches patterns of the form:
// (a^b^c^d) & (a^b^c^d^e) => (a^b^c^d) & ~e, where e is numeric
// The terms don't necessarily have to be in the same order; we extract the
// XOR subterms from both sides and find the missing value from the smaller
// XOR chain.
int pat_AndXor(minsn_t *ins)
{
// Instruction must be AND ...
if (ins->opcode != m_and)
return 0;
// ... at least one side must be XOR ...
bool bLeftIsNotXor = ins->l.t != mop_d || ins->l.d->opcode == m_xor;
bool bRightIsNotXor = ins->r.t != mop_d || ins->r.d->opcode == m_xor;
if (!bLeftIsNotXor && !bRightIsNotXor)
return 0;
// Collect the constant and non-constant parts of the XOR chains. We
// use the XorSimplifier class, but we don't actually simplify the
// instruction; we just make use of the existing functionality to
// collect the operands that are XORed together.
XorSimplifier xsL, xsR;
xsL.Insert(&ins->l);
xsR.Insert(&ins->r);
// There must be the same number of non-constant terms on both sides
if (xsL.m_NonConst.size() != xsR.m_NonConst.size())
return 0;
bool bLeftIsSmaller;
std::set<mop_t *> *smaller, *bigger;
// Either the left is one bigger than the right...
if (xsL.m_Const.size() == xsR.m_Const.size() + 1)
smaller = &xsR.m_Const, bigger = &xsL.m_Const, bLeftIsSmaller = false;
// Or the right is one bigger than the left...
else
if (xsR.m_Const.size() == xsL.m_Const.size() + 1)
smaller = &xsL.m_Const, bigger = &xsR.m_Const, bLeftIsSmaller = true;
// Or, the pattern doesn't match, so return 0.
else
return 0;
// The sets of non-constant operands must match
if (!(NonConstSetsMatch(&xsL.m_NonConst, &xsR.m_NonConst)))
return 0;
// Find the one constant value that wasn't common to both sides
mop_t *noMatch = FindNonCommonConstant(smaller, bigger);
// If there wasn't one, the pattern failed, so return 0
if (noMatch == NULL)
return 0;
// Invert the non-common number and truncate it down to its proper size
noMatch->nnn->update_value(~noMatch->nnn->value & ((1ULL << (noMatch->size * 8)) - 1));
// Replace the larger XOR construct with the now-inverted value
if (bLeftIsSmaller)
ins->r.swap(*noMatch);
else
ins->l.swap(*noMatch);
// msg("[I] pat_AndXor\n");
return 1;
}
// Replaces conditionals of the form !(!c1 || !c2) with (c1 && c2).
int pat_LnotOrLnotLnot(minsn_t *ins)
{
// The whole expression must be logically negated.
minsn_t *inner;
if (!ExtractLogicallyNegatedTerm(ins, inner) || inner == NULL)
return 0;
// The thing that was negated must be an OR with compound operands.
if (inner->opcode != m_or || inner->l.t != mop_d || inner->r.t != mop_d)
return 0;
// The two compound operands must also be negated
minsn_t *insLeft = inner->l.d;
minsn_t *insRight = inner->r.d;
mop_t *opLeft, *opRight;
if (!ExtractLogicallyNegatedTerm(inner->l.d, insLeft, &opLeft) || !ExtractLogicallyNegatedTerm(inner->r.d, insRight, &opRight))
return 0;
// If we're here, the pattern matched. Make the AND.
ins->opcode = m_and;
ins->l.swap(*opLeft);
ins->r.swap(*opRight);
// msg("[I] pat_LnotOrLnotLnot\n");
return 1;
}
// Replaces terms of the form ~(~x | n), where n is a number, with x & ~n.
int pat_BnotOrBnotConst(minsn_t *ins)
{
// We're looking for BNOT instructions (~y)...
if (ins->opcode != m_bnot || ins->l.t != mop_d)
return 0;
// ... where x is an OR instruction ...
minsn_t *inner = ins->l.d;
if (inner->opcode != m_or)
return 0;
// ... and one side is constant, where the other one isn't ...
mop_t *orNum, *orNonNum;
if (!ExtractNumAndNonNum(inner, orNum, orNonNum))
return 0;
// ... and the non-constant part is itself a BNOT instruction (~x)
if (orNonNum->t != mop_d || orNonNum->d->opcode != m_bnot)
return 0;
// Once we found it, rewrite the top-level BNOT with an AND
ins->opcode = m_and;
ins->l.swap(orNonNum->d->l);
// Invert the numeric part
uint64 notNum = ~(orNum->nnn->value) & ((1ULL << (orNum->size * 8)) - 1);
ins->r.make_number(notNum, orNum->size);
return 1;
}
// This function just inspects the instruction and calls the
// pattern-replacement functions above to perform deobfuscation.
int Optimize(minsn_t *ins)
{
int iLocalRetVal = 0;
switch (ins->opcode)
{
case m_bnot:
iLocalRetVal = pat_BnotOrBnotConst(ins);
break;
case m_or:
iLocalRetVal = pat_OrAndNot(ins);
if (!iLocalRetVal)
iLocalRetVal = pat_OrViaXorAnd(ins);
if (!iLocalRetVal)
iLocalRetVal = pat_OrNegatedSameCondition(ins);
if (!iLocalRetVal)
iLocalRetVal = pat_LogicAnd1(ins);
break;
case m_and:
iLocalRetVal = pat_AndXor(ins);
if (!iLocalRetVal)
iLocalRetVal = pat_MulSub(ins);
break;
case m_xor:
iLocalRetVal = pat_XorChain(ins);
if(!iLocalRetVal)
iLocalRetVal = pat_LnotOrLnotLnot(ins);
if (!iLocalRetVal)
iLocalRetVal = pat_LogicAnd1(ins);
break;
case m_lnot:
iLocalRetVal = pat_LnotOrLnotLnot(ins);
break;
}
return iLocalRetVal;
}
// This is the virtual function dictated by the optinsn_t interface. This
// function gets called by the Hex-Rays kernel; we optimize the microcode.
int func(mblock_t *blk, minsn_t *ins);
};
// Callback function. Do pattern-deobfuscation.
int ObfCompilerOptimizer::func(mblock_t *blk, minsn_t *ins)
{
#if OPTVERBOSE
char buf[1000];
mcode_t_to_string(ins, buf, sizeof(buf));
msg("ObfCompilerOptimizer: %a %s\n", ins->ea, buf);
#endif
int retVal = Optimize(ins);
int iLocalRetVal = 0;
// This callback doesn't seem to get called for subinstructions of
// conditional branches. So, if we're dealing with a conditional branch,
// manually optimize the condition expression
if ((is_mcode_jcond(ins->opcode) || is_mcode_set(ins->opcode)) && ins->l.t == mop_d)
{
// In order to optimize the jcc condition, we actually need a different
// structure than optinsn_t: in particular, we need a minsn_visitor_t.
// This local structure declaration just passes the calls to
// minsn_visitor_t::visit_minsn onto the Optimize function in this
// optinsn_t object.
struct Blah : minsn_visitor_t
{
int visit_minsn()
{
return othis->Optimize(this->curins);
}
ObfCompilerOptimizer *othis;
Blah(ObfCompilerOptimizer *o) : othis(o) { };
};
Blah b(this);
// Optimize all subinstructions of the JCC conditional
iLocalRetVal += ins->for_all_insns(b);
// For good measure, optimize the top-level instruction again. I don't
// know if this is necessary or important, but whatever.
// iLocalRetVal += Optimize(ins);
}
retVal += iLocalRetVal;
// If any optimizations were performed...
if (retVal)
{
#if OPTVERBOSE
// ... inform the user ...
mcode_t_to_string(ins, buf, sizeof(buf));
msg("ObfCompilerOptimizer: replaced by %s\n", buf);
#endif
#if IDA_SDK_VERSION == 710
ins->optimize_flat();
#elif IDA_SDK_VERSION >= 720
ins->optimize_solo();
#endif
// I got an INTERR if I optimized jcc conditionals without marking the lists dirty.
blk->mark_lists_dirty();
blk->mba->verify(true);
//blk->mba->optimize_local(0);
// ... verify we haven't corrupted anything
//blk->mba->verify(true);
}
return retVal;
}