-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
96 lines (90 loc) · 3.55 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
from algos import Algo, LSE, LSE_imp, LSE_imp_mod, TRUVAR, TRUVAR_imp, RMILE
from argparse import ArgumentParser
from utils import f1_plots, draw_points, draw_paths, draw_costs
import random
import numpy as np
# return the average of a given list
def avg_list(l):
sum = 0
for value in l:
sum += value
avg = sum / len(l)
return avg
# input parameters
def get_args():
parser = ArgumentParser(description='High Level Set Estimation')
# normal for F1 scores with steps, cost for F1 with costs, single for picked points and paths
parser.add_argument('--test_type', type=str, default='normal')
# algo num, 1 for LSE, ...see in README.txt
parser.add_argument('--algo', type=int, nargs='+')
# True for algos considering cost, false for not considering cost
parser.add_argument('--cost', type=bool, default=False)
args = parser.parse_args()
return args
def main():
# set random seed
random.seed(1)
config = get_args()
# generate sample data
delta = 0.05
x = np.arange(0, 1, delta)
y = np.arange(0, 2, delta)
X, Y = np.meshgrid(x, y)
data = np.concatenate((X.reshape(-1, 1), Y.reshape(-1, 1)), axis=1)
# [mu, sigma, l]
GP_prior = [0, np.exp(1), np.exp(-1.5)]
# different algos
algo = {}
algo[1] = LSE(data, GP_prior, 1, False, config.cost, acc=0)
algo[2] = LSE_imp(data, GP_prior, 1 / 3, True, config.cost, acc=0)
algo[3] = LSE_imp_mod(data, GP_prior, 1 / 3, True, config.cost, acc=0)
algo[4] = TRUVAR(data, GP_prior, 1, False, config.cost, delta=0, eta=1, r=0.1)
algo[5] = TRUVAR_imp(data, GP_prior, 1 / 3, False, config.cost, delta=0, eta=1, r=0.1)
algo[6] = RMILE(data, GP_prior, 1, False, config.cost, eta=0.01)
algo[7] = LSE(data, GP_prior, 1, False, True, acc=0)
algo[7].name = 'LSE_cost'
if config.test_type == 'single':
# draw points and paths
start_point = random.randint(0, data.shape[0])
f1, cost, time, points = algo[config.algo[0]].run(start_point)
cost = 'cost_' if config.cost else ''
draw_points(points, algo[config.algo[0]].name, cost)
draw_paths(points, algo[config.algo[0]].name, cost)
elif config.test_type == 'cost':
# draw cost and F1 plots
f1s = []
costs = []
labels = []
for j in config.algo:
labels.append(algo[j].name)
start_point = random.randint(0, data.shape[0])
for index, j in enumerate(config.algo):
print('Algo: ', algo[j].name)
f1, cost, time, _ = algo[j].run(start_point)
f1s.append(f1)
costs.append(cost)
draw_costs(costs, f1s, labels)
else:
# draw step and F1 plots
f1s = []
labels = []
times = []
for j in config.algo:
f1s.append([])
times.append([])
labels.append(algo[j].name)
# iteration steps, here we choose 10
for i in range(10):
print('Epoch: ', i)
start_point = random.randint(0, data.shape[0])
for index, j in enumerate(config.algo):
print('Algo: ', algo[j].name)
f1, cost, time, _ = algo[j].run(start_point)
f1s[index].append(f1)
times[index].append(time)
for index, j in enumerate(config.algo):
avg_time = avg_list(times[index])
print(algo[j].name, 'avg_time: ', avg_time)
f1_plots(f1s, labels)
if __name__ == '__main__':
main()