-
Notifications
You must be signed in to change notification settings - Fork 334
/
Copy pathcreate_yolo_prototxt.py
297 lines (280 loc) · 10.6 KB
/
create_yolo_prototxt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
# -*- coding: utf-8 -*-
from ConfigParser import ConfigParser
from collections import OrderedDict
import argparse
import logging
import os
import sys
class CaffeLayerGenerator(object):
def __init__(self, name, ltype):
self.name = name
self.bottom = []
self.top = []
self.type = ltype
def get_template(self):
return """
layer {{{{
name: "{}"
type: "{}"
bottom: "{}"
top: "{}"{{}}
}}}}""".format(self.name, self.type, self.bottom[0], self.top[0])
class CaffeInputLayer(CaffeLayerGenerator):
def __init__(self, name, channels, width, height):
super(CaffeInputLayer, self).__init__(name, 'Input')
self.channels = channels
self.width = width
self.height = height
def write(self, f):
f.write("""
input: "{}"
input_shape {{
dim: 1
dim: {}
dim: {}
dim: {}
}}""".format(self.name, self.channels, self.width, self.height))
class CaffeConvolutionLayer(CaffeLayerGenerator):
def __init__(self, name, filters, ksize=None, stride=None, pad=None, bias=True):
super(CaffeConvolutionLayer, self).__init__(name, 'Convolution')
self.filters = filters
self.ksize = ksize
self.stride = stride
self.pad = pad
self.bias = bias
def write(self, f):
opts = ['']
if self.ksize is not None: opts.append('kernel_size: {}'.format(self.ksize))
if self.stride is not None: opts.append('stride: {}'.format(self.stride))
if self.pad is not None: opts.append('pad: {}'.format(self.pad))
if not self.bias: opts.append('bias_term: false')
param_str = """
convolution_param {{
num_output: {}{}
}}""".format(self.filters, '\n '.join(opts))
f.write(self.get_template().format(param_str))
class CaffePoolingLayer(CaffeLayerGenerator):
def __init__(self, name, pooltype, ksize=None, stride=None, pad=None, global_pooling=None):
super(CaffePoolingLayer, self).__init__(name, 'Pooling')
self.pooltype = pooltype
self.ksize = ksize
self.stride = stride
self.pad = pad
self.global_pooling = global_pooling
def write(self, f):
opts = ['']
if self.ksize is not None: opts.append('kernel_size: {}'.format(self.ksize))
if self.stride is not None: opts.append('stride: {}'.format(self.stride))
if self.pad is not None: opts.append('pad: {}'.format(self.pad))
if self.global_pooling is not None: opts.append('global_pooling: {}'.format('True' if self.global_pooling else 'False'))
param_str = """
pooling_param {{
pool: {}{}
}}""".format(self.pooltype, '\n '.join(opts))
f.write(self.get_template().format(param_str))
class CaffeInnerProductLayer(CaffeLayerGenerator):
def __init__(self, name, num_output):
super(CaffeInnerProductLayer, self).__init__(name, 'InnerProduct')
self.num_output = num_output
def write(self, f):
param_str = """
inner_product_param {{
num_output: {}
}}""".format(self.num_output)
f.write(self.get_template().format(param_str))
class CaffeBatchNormLayer(CaffeLayerGenerator):
def __init__(self, name):
super(CaffeBatchNormLayer, self).__init__(name, 'BatchNorm')
def write(self, f):
param_str = """
batch_norm_param {
use_global_stats: true
}"""
f.write(self.get_template().format(param_str))
class CaffeScaleLayer(CaffeLayerGenerator):
def __init__(self, name):
super(CaffeScaleLayer, self).__init__(name, 'Scale')
def write(self, f):
param_str = """
scale_param {
bias_term: true
}"""
f.write(self.get_template().format(param_str))
class CaffeReluLayer(CaffeLayerGenerator):
def __init__(self, name, negslope=None):
super(CaffeReluLayer, self).__init__(name, 'Relu')
self.negslope = negslope
def write(self, f):
param_str = ""
if self.negslope is not None:
param_str = """
relu_param {{
negative_slope: {}
}}""".format(self.negslope)
f.write(self.get_template().format(param_str))
class CaffeDropoutLayer(CaffeLayerGenerator):
def __init__(self, name, prob):
super(CaffeDropoutLayer, self).__init__(name, 'Dropout')
self.prob = prob
def write(self, f):
param_str = """
dropout_param {{
dropout_ratio: {}
}}""".format(self.prob)
f.write(self.get_template().format(param_str))
class CaffeSoftmaxLayer(CaffeLayerGenerator):
def __init__(self, name):
super(CaffeSoftmaxLayer, self).__init__(name, 'Softmax')
def write(self, f):
f.write(self.get_template().format(""))
class CaffeProtoGenerator:
def __init__(self, name):
self.name = name
self.sections = []
self.lnum = 0
self.layer = None
def add_layer(self, l):
self.sections.append( l )
def add_input_layer(self, items):
self.lnum = 0
lname = "data"
self.layer = CaffeInputLayer(lname, items['channels'], items['width'], items['height'])
self.layer.top.append( lname )
self.add_layer( self.layer )
def add_convolution_layer(self, items):
self.lnum += 1
prev_blob = self.layer.top[0]
lname = "conv"+str(self.lnum)
filters = items['filters']
ksize = items['size'] if 'size' in items else None
stride = items['stride'] if 'stride' in items else None
pad = items['pad'] if 'pad' in items else None
bias = not bool(items['batch_normalize']) if 'batch_normalize' in items else True
self.layer = CaffeConvolutionLayer( lname, filters, ksize=ksize, stride=stride, pad=pad, bias=bias )
self.layer.bottom.append( prev_blob )
self.layer.top.append( lname )
self.add_layer( self.layer )
def add_innerproduct_layer(self, items):
self.lnum += 1
prev_blob = self.layer.top[0]
lname = "fc"+str(self.lnum)
num_output = items['output']
self.layer = CaffeInnerProductLayer( lname, num_output )
self.layer.bottom.append( prev_blob )
self.layer.top.append( lname )
self.add_layer( self.layer )
def add_pooling_layer(self, ltype, items, global_pooling=None):
prev_blob = self.layer.top[0]
lname = "pool"+str(self.lnum)
ksize = items['size'] if 'size' in items else None
stride = items['stride'] if 'stride' in items else None
pad = items['pad'] if 'pad' in items else None
self.layer = CaffePoolingLayer( lname, ltype, ksize=ksize, stride=stride, pad=pad, global_pooling=global_pooling )
self.layer.bottom.append( prev_blob )
self.layer.top.append( lname )
self.add_layer( self.layer )
def add_batchnorm_layer(self, items):
prev_blob = self.layer.top[0]
lname = "bn"+str(self.lnum)
self.layer = CaffeBatchNormLayer( lname )
self.layer.bottom.append( prev_blob )
self.layer.top.append( lname )
self.add_layer( self.layer )
def add_scale_layer(self, items):
prev_blob = self.layer.top[0]
lname = "scale"+str(self.lnum)
self.layer = CaffeScaleLayer( lname )
self.layer.bottom.append( prev_blob )
self.layer.top.append( lname )
self.add_layer( self.layer )
def add_relu_layer(self, items):
prev_blob = self.layer.top[0]
lname = "relu"+str(self.lnum)
self.layer = CaffeReluLayer( lname )
self.layer.bottom.append( prev_blob )
self.layer.top.append( prev_blob ) # loopback
self.add_layer( self.layer )
def add_dropout_layer(self, items):
prev_blob = self.layer.top[0]
lname = "drop"+str(self.lnum)
self.layer = CaffeDropoutLayer( lname, items['probability'] )
self.layer.bottom.append( prev_blob )
self.layer.top.append( prev_blob ) # loopback
self.add_layer( self.layer )
def add_softmax_layer(self, items):
prev_blob = self.layer.top[0]
lname = "prob"
self.layer = CaffeSoftmaxLayer( lname )
self.layer.bottom.append( prev_blob )
self.layer.top.append( lname )
self.add_layer( self.layer )
def finalize(self, name):
self.layer.top[0] = name # replace
def write(self, fname):
with open(fname, 'w') as f:
f.write('name: "{}"'.format(self.name))
for sec in self.sections:
sec.write(f)
logging.info('{} is generated'.format(fname))
###################################################################33
class uniqdict(OrderedDict):
_unique = 0
def __setitem__(self, key, val):
if isinstance(val, OrderedDict):
self._unique += 1
key += "_"+str(self._unique)
OrderedDict.__setitem__(self, key, val)
def convert(cfgfile, ptxtfile):
#
parser = ConfigParser(dict_type=uniqdict)
parser.read(cfgfile)
netname = os.path.basename(cfgfile).split('.')[0]
#print netname
gen = CaffeProtoGenerator(netname)
for section in parser.sections():
_section = section.split('_')[0]
if _section in ["crop", "cost"]:
continue
#
batchnorm_followed = False
relu_followed = False
items = dict(parser.items(section))
if 'batch_normalize' in items and items['batch_normalize']:
batchnorm_followed = True
if 'activation' in items and items['activation'] != 'linear':
relu_followed = True
#
if _section == 'net':
gen.add_input_layer(items)
elif _section == 'convolutional':
gen.add_convolution_layer(items)
if batchnorm_followed:
gen.add_batchnorm_layer(items)
gen.add_scale_layer(items)
if relu_followed:
gen.add_relu_layer(items)
elif _section == 'connected':
gen.add_innerproduct_layer(items)
if relu_followed:
gen.add_relu_layer(items)
elif _section == 'maxpool':
gen.add_pooling_layer('MAX', items)
elif _section == 'avgpool':
gen.add_pooling_layer('AVE', items, global_pooling=True)
elif _section == 'dropout':
gen.add_dropout_layer(items)
elif _section == 'softmax':
gen.add_softmax_layer(items)
else:
logging.error("{} layer is not supported".format(_section))
#gen.finalize('result')
gen.write(ptxtfile)
def main():
parser = argparse.ArgumentParser(description='Convert YOLO cfg to Caffe prototxt')
parser.add_argument('cfg', type=str, help='YOLO cfg')
parser.add_argument('prototxt', type=str, help='Caffe prototxt')
args = parser.parse_args()
convert(args.cfg, args.prototxt)
if __name__ == "__main__":
main()
# vim:sw=4:ts=4:et