-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalyze.py
executable file
·103 lines (94 loc) · 3.61 KB
/
analyze.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import os,pandas as pd,numpy as np,matplotlib.pyplot as plt
from pyspm import Bruker
from configs import *
from profiler import plot_all
plt.style.use('seaborn')
def read_afm(fpath):
return Bruker(fpath).get_channel()
def smooth(data,k = 5):
kernel = np.ones(k) / k
return np.convolve(data, kernel, mode='same')
def moving_average(x, w):
return np.convolve(x, np.ones(w), 'valid') / w
def find_min_loc(series):
return np.argmin(series)
def find_max_loc(series):
return np.argmax(series)
def get_mean_trend(series,axis=0,smoothed=False):
series=series.mean(axis=axis)
if smoothed:
series=smooth(series)
return series
def get_list(fpath,suffix='',join=True):
lists=[]
if os.path.isfile(fpath):
with open(fpath) as f:
while True:
line=f.readline()
if line=='':
break
elif line[-1]=='\n':
lists.append(line[:-1])
else:
lists.append(line)
elif os.path.isdir(fpath):
if suffix=='': #return folder list
lists=next(os.walk(fpath))[1]
else:
lists=[i for i in os.listdir(fpath) if i.lower().endswith(suffix)]
if join:
return [f'{fpath}\\{item}' for item in lists]
return lists
def get_profile(afm,smoothed=False,plot=True,fname=None):
#global H,W,X_PPU,Y_PPU
#H=afm.shape[0]
#W=afm.shape[1]
h_2,w_2=int(H/2),int(W/2)
#Y_PPU=1500/H
#X_PPU=3000/W
center=afm[h_2-32:h_2+32,:]
right=afm[h_2-32:h_2+32,w_2:]
bot=afm[-12:,:]
top=afm[:12,:]
# Get Mean Trends
a_mean,c_mean,r_mean,t_mean,b_mean=[get_mean_trend(arr,axis=0,smoothed=smoothed)
for arr in [afm,center,right,top,bot]]
## Get S2A Location
s2a_right=find_min_loc(r_mean)+w_2
s2a_left=find_min_loc(a_mean[w_2:s2a_right-10])+w_2
## Get BG Location
top_bg=w_2+find_min_loc(t_mean[w_2:])
bot_bg=w_2+find_min_loc(b_mean[w_2:])
if abs(top_bg-bot_bg)<8:
bg=max(top_bg,bot_bg)
else:
bg=256+find_min_loc(t_mean[w_2:]+b_mean[w_2:])
#raise Exception("")
##Get MR center
bg_area=afm[:,bg-10:bg+10]
bg_mean=bg_area.mean(axis=1)
y_center=int((find_max_loc(smooth(bg_mean)[:40])+H-40+find_max_loc(smooth(bg_mean)[-40:]))/2)
# Return Measurements
sf=afm[:,bg+BG_OFFSET:bg+BG_OFFSET+int(BOX_2_W/X_PPU)]
sf_mean=get_mean_trend(sf,axis=1,smoothed=smoothed)
Valley=sf_mean.min()
Peak=sf_mean.max()
P_V=Peak-Valley
mr_b_box=afm[y_center-int(MR_B_BOX[1]/Y_PPU/2):y_center+int(MR_B_BOX[1]/Y_PPU/2),
bg+BG_OFFSET:bg+BG_OFFSET+int(MR_B_BOX[0]/X_PPU)]
MR_M=mr_b_box.mean(axis=1).max()
profile=get_mean_trend(afm[y_center-int(BOX_1_H/Y_PPU/2):y_center+int(BOX_1_H/Y_PPU/2),:],
axis=0,smoothed=smoothed)
s2a_max=profile[s2a_left:s2a_right].max()
s2b_mr_max=profile[s2a_right:s2a_right+int(MR_X_RNG/X_PPU)].max()
output=pd.DataFrame({'MAX':[round(Peak,4)],'MIN':[round(Valley,4)],'P-V':[round(P_V,4)],
'MidMR \nMax':[round(MR_M,4)],'S2A-S2B':[round(s2a_max,4)],'MR-S2B':[round(s2b_mr_max,4)]})
output.index=['Unit [nm]']
if plot:
fig=plot_all(afm,profile,bg,y_center,s2a_right,s2a_left,w_2,sf_mean,output)
plt.tight_layout()
plt.subplots_adjust(hspace=0.5)
if fname:
fig.savefig(f'{fname}.jpg',bbox_inches='tight')
plt.close('all')
return output