Skip to content

Latest commit

 

History

History
1092 lines (499 loc) · 53.3 KB

README.md

File metadata and controls

1092 lines (499 loc) · 53.3 KB
Support forum EByte e220 English
Forum supporto EByte e220 italiano



Tutorial

CHANGELOG

  • 2023-04-18 1.0.8 Distinct frequency from 900MHz and 915Mhz devices Forum
  • 2023-01-28 1.0.7 Fix UART_PARITY for ESP32 C3
  • 2022-09-19 1.0.6 Fix stm32 rogerclerk library xreef/LoRa_E32_Series_Library#48
  • 2022-08-31 1.0.5 Fix regression and Minor fix and examples update for Raspberry Pi Pico and STM32
  • 2022-08-31 1.0.4 Minor fix and examples update for Raspberry Pi Pico and STM32
  • 2022-04-27 1.0.3 Fix frequencies define
  • 2022-04-07 1.0.2 Fix support for STM32

An Arduino UNO shield to simplify the use

Arduino UNO shield

You can order the PCB here

Instruction and assembly video on 6 part of the guide

An WeMos D1 shield to simplify the use

Arduino UNO shield

You can order the PCB here

Instruction and assembly video on 6 part of the guide

Ebyte LoRa E220 LLCC68 device for Arduino, esp32 or esp8266: library


LoRa or Long Range wireless data telemetry is a technology pioneered by Semtech that operates at a lower frequency than NRF24L01 (433 MHz, 868 MHz, or 916 MHz against 2.4 GHz for the NRF24L01) but at thrice the distance (from 5000m to 11000m).

LLCC68

LoRa Smart Home (LLCC68) is a sub-GHz LoRa® RF Transceiver for medium-range indoor and indoor to outdoor wireless applications. SPI interface. Pin-to-pin is compatible with SX1262. SX1261, SX1262, SX1268, and LLCC68 are designed for long battery life with just 4.2 mA of active receive current consumption. The SX1261 can transmit up to +15 dBm, and the SX1262, SX1268, and LLCC68 can transmit up to +22 dBm with highly efficient integrated power amplifiers.

These devices support LoRa modulation for LPWAN use cases and (G)FSK modulation for legacy use cases. The devices are highly configurable to meet different application requirements for consumer use. The device provides LoRa modulation compatible with Semtech transceivers used by the LoRaWAN® specification released by the LoRa Alliance®. The radio is suitable for systems targeting compliance with radio regulations, including but not limited to ETSI EN 300 220, FCC CFR 47 Part 15, China regulatory requirements, and the Japanese ARIB T-108. Continuous frequency coverage from 150MHz to 960MHz allows the support of all major sub-GHz ISM bands around the world.

Features

  • The new LoRa spread spectrum modulation technology developed based on LLCC68, it brings a more extended communication distance and stronger anti-interference ability;
  • Support users to set the communication key by themselves, and it cannot be read, which significantly improves the confidentiality of user data;
  • Support LBT function, monitor the channel environment noise before sending, which significantly improves the communication success rate of the module in harsh environments;
  • Support RSSI signal strength indicator function for evaluating signal quality, improving communication network, and ranging;
  • Support air wakeup, that is ultra-low power consumption, suitable for battery-powered applications;
  • Support point to point transmission, broadcast transmission, channel sense;
  • Support deep sleep, the power consumption of the whole machine is about 5uA in this mode;
  • The module has built-in PA+LNA, and the communication distance can reach 5km under ideal conditions;
  • The parameters are saved after power-off, and the module will work according to the set parameters after power-on;
  • Efficient watchdog design, once an exception occurs, the module will automatically restart and continue to work according to the previous parameter settings;
  • Support the bit rate of2.4k~62.5kbps;
  • Support 3.0~5.5V power supply, power supply greater than 5V can guarantee the best performance;
  • Industrial standard design, supporting long-term use at -40~+85℃;

Comparison

LLCC68SX1278-SX1276
Distance> 11Km8Km
Rate (LoRa)1.76Kbps – 62.5Kbps 0.3Kbps – 19.2Kbps
Sleep power consumption2µA 5µA

Library

You can find my library here, and It’s available on Arduino IDE library manager.

To download.

Click the DOWNLOADS button in the top right corner, rename the uncompressed folder LoRa_E220.

Check that the LoRa_E220 folder contains LoRa_E220.cpp and LoRa_E220.h.

Place the LoRa_E220 library folder in your /libraries/ folder.

You may need to create the libraries subfolder if it’s your first library.

Restart the IDE.

Pinout

Pin No.Pin itemPin directionPin application
1M0Input(weak pull-up)Work with M1 & decide the four operating modes. Floating is not allowed; it can be ground.
2M1Input(weak pull-up)Work with M0 & decide the four operating modes. Floating is not allowed; it can be ground.
3RXDInputTTL UART inputs connect to external (MCU, PC) TXD output pin. It can be configured as open-drain or pull-up input.
4TXDOutputTTL UART outputs connect to external RXD (MCU, PC) input pin. Can be configured as open-drain or push-pull output

5

AUX

Output
To indicate the module’s working status & wake up the external MCU. During the procedure of self-check initialization, the pin outputs a low level. It can be configured as open-drain or push-pull output (floating is allowed).
6VCCPower supply 3V~5.5V DC
7GNDGround

As you can see, you can set various modes via M0 and M1 pins.

ModeM1M0Explanation
Normal00UART and wireless channels are open, and transparent transmission is on
WOR Transmitter01WOR Transmitter
WOR Receiver10WOR Receiver (Supports wake up over air)
Deep sleep mode11The module goes to sleep (automatically wake up when configuring parameters)

Some pins can be used statically, but If you connect them to the microcontroller and configure them in the library, you gain in performance and can control all modes via software. Still, we are going to explain better next.

Fully connected schema

As I already said, It’s not essential to connect all pins to the microcontroller’s output; you can put M0 and M1 pins to HIGH or LOW to get the desired configuration. If you don’t connect AUX, the library set a reasonable delay to ensure that the operation is complete (If you have trouble with the device freezing, you must put a pull-up 4.7k resistor or better connect to the device. ).

AUX pin

When transmitting data can be used to wake up external MCU and return HIGH on data transfer finish.

When receiving, AUX goes LOW and returns HIGH when the buffer is empty.

It’s also used for self-checking to restore regular operation (on power-on and sleep/program mode).

esp8266

esp8266 connection schema is more straightforward because it works at the same voltage of logical communications (3.3v).

It’s essential to add a pull-up resistor (4,7Kohm) to get good stability.

E22esp8266
M0D7
M1D6
TXPIN D2 (PullUP 4,7KΩ)
RXPIN D3 (PullUP 4,7KΩ)
AUXPIN D5 (PullUP 4,7KΩ)
VCC5V (but work with less power in 3.3v)
GNDGND

esp32

Similar connection schema for esp32, but for RX and TX, we use RX2 and TX2 because, by default, esp32 doesn’t have SoftwareSerial but has 3 Serial.

E22esp32
M0D21
M1D19
TXPIN RX2 (PullUP 4,7KΩ)
RXPIN TX3 (PullUP 4,7KΩ)
AUXPIN D18 (PullUP 4,7KΩ) (D15 to wake up)
VCC5V (but work with less power in 3.3v)
GNDGND

Arduino

Arduino’s working voltage is 5v, so we need to add a voltage divider on RX pin M0 and M1 of LoRa module to prevent damage; you can get more information here Voltage divider: calculator and application.

You can use a 2Kohm resistor to GND and 1Kohm from the signal, then put them together on RX.

M07 (voltage divider)
M16 (voltage divider)
TXPIN 2 (PullUP 4,7KΩ)
RXPIN 3 (PullUP 4,7KΩ & Voltage divider)
AUXPIN 5 (PullUP 4,7KΩ)
VCC5V
GNDGND

Arduino MKR WiFi 1010

M02 (voltage divider)
M13 (voltage divider)
TXPIN 14 Tx (PullUP 4,7KΩ)
RXPIN 13 Rx (PullUP 4,7KΩ)
AUXPIN 1 (PullUP 4,7KΩ)
VCC5V
GNDGND

Constructor

I made a set of numerous constructors because we can have more options and situations to manage.

		LoRa_E220(byte txE220pin, byte rxE220pin, UART_BPS_RATE bpsRate = UART_BPS_RATE_9600);
		LoRa_E220(byte txE220pin, byte rxE220pin, byte auxPin, UART_BPS_RATE bpsRate = UART_BPS_RATE_9600);
		LoRa_E220(byte txE220pin, byte rxE220pin, byte auxPin, byte m0Pin, byte m1Pin, UART_BPS_RATE bpsRate = UART_BPS_RATE_9600);

The first set of constructors is created to delegate Serial and other pins to the library.

  • txE220pin and rxE220pin are the pins to connect to UART. They are mandatory.
  • auxPin is a pin that checks the operation, transmission, and receiving status (we are going to explain better next), that pin isn’t mandatory; if you don’t set It, I apply a delay to permit the operation to complete itself (with latency, if you have trouble, like freeze device, you must put a pull-up 4.7k resistor or better connect to the device ).
  • m0pin and m1Pin are the pins to change operation MODE (see the table upper), I think this pins in “production” are going to connect directly HIGH or LOW. Still, for a test, they are helpful to be managed by the library.
  • bpsRate is the baud rate of SoftwareSerial is typically 9600 (the only baud rate in programming/sleep mode)

A simple example is

#include "LoRa_E220.h"

LoRa_E32 e220ttl(2, 3); // e22 TX e22 RX // LoRa_E32 e32ttl(2, 3, 5, 6, 7); // e22 TX e22 RX

We can use a SoftwareSerial directly with another constructor

		LoRa_E220(HardwareSerial* serial, UART_BPS_RATE bpsRate = UART_BPS_RATE_9600);
		LoRa_E220(HardwareSerial* serial, byte auxPin, UART_BPS_RATE bpsRate = UART_BPS_RATE_9600);
		LoRa_E220(HardwareSerial* serial, byte auxPin, byte m0Pin, byte m1Pin, UART_BPS_RATE bpsRate = UART_BPS_RATE_9600);

The example upper with this constructor can be done like so.

#include <SoftwareSerial.h>
#include "LoRa_E220.h"

SoftwareSerial mySerial(2, 3); // e220 TX e220 RX LoRa_E220 e220ttl(&mySerial); // LoRa_E220 e220ttl(&mySerial, 5, 7, 6);

The last set of constructors is to permit an HardwareSerial instead of SoftwareSerial.

		LoRa_E220(SoftwareSerial* serial, UART_BPS_RATE bpsRate = UART_BPS_RATE_9600);
		LoRa_E220(SoftwareSerial* serial, byte auxPin, UART_BPS_RATE bpsRate = UART_BPS_RATE_9600);
		LoRa_E220(SoftwareSerial* serial, byte auxPin, byte m0Pin, byte m1Pin, UART_BPS_RATE bpsRate = UART_BPS_RATE_9600);

For esp32, you have three additional constructors to permit to manage pins for HardWare serial.

			LoRa_E220(byte txE220pin, byte rxE220pin, HardwareSerial* serial, UART_BPS_RATE bpsRate = UART_BPS_RATE_9600, uint32_t serialConfig = SERIAL_8N1);
			LoRa_E220(byte txE220pin, byte rxE220pin, HardwareSerial* serial, byte auxPin, UART_BPS_RATE bpsRate = UART_BPS_RATE_9600, uint32_t serialConfig = SERIAL_8N1);
			LoRa_E220(byte txE220pin, byte rxE220pin, HardwareSerial* serial, byte auxPin, byte m0Pin, byte m1Pin, UART_BPS_RATE bpsRate = UART_BPS_RATE_9600, uint32_t serialConfig = SERIAL_8N1);

Begin

The begin command is used to startup Serial and pins in input and output mode.

void begin();

in execution is

	// Startup all pins and UART
	e220ttl.begin();

Configuration and method to get information

There are many methods for managing configuration and getting information about the device.

		ResponseStructContainer getConfiguration();
		ResponseStatus setConfiguration(Configuration configuration, PROGRAM_COMMAND saveType = WRITE_CFG_PWR_DWN_LOSE);
	ResponseStructContainer getModuleInformation();
    void printParameters(struct Configuration configuration);
    ResponseStatus resetModule();

Response containers

To simplify the management of response, I created a set of containers, which is very useful for managing errors and returning generic data.

ResponseStatus

The ResponseStatus is a status container and has two simple entry points, with this you can get the status code and the description of the status code

	Serial.println(c.getResponseDescription()); // Description of code
	Serial.println(c.code); // 1 if Success

The code is

  E220_SUCCESS = 1,
  ERR_E220_UNKNOWN,
  ERR_E220_NOT_SUPPORT,
  ERR_E220_NOT_IMPLEMENT,
  ERR_E220_NOT_INITIAL,
  ERR_E220_INVALID_PARAM,
  ERR_E220_DATA_SIZE_NOT_MATCH,
  ERR_E220_BUF_TOO_SMALL,
  ERR_E220_TIMEOUT,
  ERR_E220_HARDWARE,
  ERR_E220_HEAD_NOT_RECOGNIZED

ResponseContainer

This container is created to manage String response and has two entry points.

data with the string returned from the message and status an instance of RepsonseStatus.

		ResponseContainer rs = e220ttl.receiveMessage();
		String message = rs.data;
	Serial.println(rs.status.getResponseDescription());
	Serial.println(message);

But this command goes to read all the data in the buffer. If you receive three messages, you are going to read all three notes at one time, and my simple solution is to use an end character to send at the end of the message, to default I use \0 (null character)

		ResponseContainer rs = e220ttl.receiveMessageUntil();
                // You can specify a custom delimiter also
		// ResponseContainer rs = e220ttl.receiveMessageUntil('|');
	String message = rs.data;

	Serial.println(rs.status.getResponseDescription());
	Serial.println(message);

This version of the device support RSSI also. To read that parameter (if you specify in the configuration that you want to send also that), you can use

	    ResponseContainer rc = e220ttl.receiveMessageRSSI();
		String message = rs.data;
	Serial.println(rs.status.getResponseDescription());
	Serial.println(message);
    Serial.print("RSSI: "); Serial.println(rc.rssi, DEC);

ResponseStructContainer

The ResponseStructContainer is the more “complex” container. I use this to manage structures, It has the same entry points of ResponseContainer, but data is a void pointer to manage complex structure.

	ResponseStructContainer c;
	c = e220ttl.getConfiguration();
	// It's important get configuration pointer before all other operation
	Configuration configuration = *(Configuration*) c.data;
	Serial.println(c.status.getResponseDescription());
	Serial.println(c.status.code);
    c.close();

If you receive a structured message with RSSI, you can use

		ResponseStructContainer rsc = e220ttl.receiveMessageRSSI(sizeof(Message));
		Serial.println(rsc.status.getResponseDescription());
		struct Message message = *(Message*) rsc.data;
		Serial.println(message.type);
		Serial.println(message.message);
		Serial.println(*(float*)(message.temperature));
		Serial.print("RSSI: "); Serial.println(rsc.rssi, DEC);
        rsc.close();

Every time you use a ResponseStructContainer you must close It with close()

getConfiguration and setConfiguration

The first method is getConfiguration, and you can use It to retrieve all data stored on the device.

		ResponseStructContainer getConfiguration();

Here is a usage example.

	ResponseStructContainer c;
	c = e32ttl.getConfiguration();
	// It's important get configuration pointer before all other operation
	Configuration configuration = *(Configuration*) c.data;
	Serial.println(c.status.getResponseDescription());
	Serial.println(c.status.code);
    Serial.println(configuration.SPED.getUARTBaudRate());
    c.close();

Structure of configuration have all data of settings, and I add a series of functions to get all description of single data.

	configuration.ADDL = 0x03;  // First part of address
	configuration.ADDH = 0x00; // Second part
configuration.CHAN = 23; // Communication channel

configuration.SPED.uartBaudRate = UART_BPS_9600; // Serial baud rate
configuration.SPED.airDataRate = AIR_DATA_RATE_010_24; // Air baud rate
configuration.SPED.uartParity = MODE_00_8N1; // Parity bit

configuration.OPTION.subPacketSetting = SPS_200_00; // Packet size
configuration.OPTION.RSSIAmbientNoise = RSSI_AMBIENT_NOISE_DISABLED; // Need to send special command
configuration.OPTION.transmissionPower = POWER_22; // Device power

configuration.TRANSMISSION_MODE.enableRSSI = RSSI_DISABLED; // Enable RSSI info
configuration.TRANSMISSION_MODE.fixedTransmission = FT_TRANSPARENT_TRANSMISSION; // Enable repeater mode
configuration.TRANSMISSION_MODE.enableLBT = LBT_DISABLED; // Check interference
configuration.TRANSMISSION_MODE.WORPeriod = WOR_2000_011; // WOR timing

You have the equivalent function for all attributes to get all descriptions:

void printParameters(struct Configuration configuration) {
	Serial.println("----------------------------------------");
Serial.print(F("HEAD : "));  Serial.print(configuration.COMMAND, HEX);Serial.print(" ");Serial.print(configuration.STARTING_ADDRESS, HEX);Serial.print(" ");Serial.println(configuration.LENGHT, HEX);
Serial.println(F(" "));
Serial.print(F("AddH : "));  Serial.println(configuration.ADDH, HEX);
Serial.print(F("AddL : "));  Serial.println(configuration.ADDL, HEX);
Serial.println(F(" "));
Serial.print(F("Chan : "));  Serial.print(configuration.CHAN, DEC); Serial.print(" -&gt; "); Serial.println(configuration.getChannelDescription());
Serial.println(F(" "));
Serial.print(F("SpeedParityBit     : "));  Serial.print(configuration.SPED.uartParity, BIN);Serial.print(" -&gt; "); Serial.println(configuration.SPED.getUARTParityDescription());
Serial.print(F("SpeedUARTDatte     : "));  Serial.print(configuration.SPED.uartBaudRate, BIN);Serial.print(" -&gt; "); Serial.println(configuration.SPED.getUARTBaudRateDescription());
Serial.print(F("SpeedAirDataRate   : "));  Serial.print(configuration.SPED.airDataRate, BIN);Serial.print(" -&gt; "); Serial.println(configuration.SPED.getAirDataRateDescription());
Serial.println(F(" "));
Serial.print(F("OptionSubPacketSett: "));  Serial.print(configuration.OPTION.subPacketSetting, BIN);Serial.print(" -&gt; "); Serial.println(configuration.OPTION.getSubPacketSetting());
Serial.print(F("OptionTranPower    : "));  Serial.print(configuration.OPTION.transmissionPower, BIN);Serial.print(" -&gt; "); Serial.println(configuration.OPTION.getTransmissionPowerDescription());
Serial.print(F("OptionRSSIAmbientNo: "));  Serial.print(configuration.OPTION.RSSIAmbientNoise, BIN);Serial.print(" -&gt; "); Serial.println(configuration.OPTION.getRSSIAmbientNoiseEnable());
Serial.println(F(" "));
Serial.print(F("TransModeWORPeriod : "));  Serial.print(configuration.TRANSMISSION_MODE.WORPeriod, BIN);Serial.print(" -&gt; "); Serial.println(configuration.TRANSMISSION_MODE.getWORPeriodByParamsDescription());
Serial.print(F("TransModeEnableLBT : "));  Serial.print(configuration.TRANSMISSION_MODE.enableLBT, BIN);Serial.print(" -&gt; "); Serial.println(configuration.TRANSMISSION_MODE.getLBTEnableByteDescription());
Serial.print(F("TransModeEnableRSSI: "));  Serial.print(configuration.TRANSMISSION_MODE.enableRSSI, BIN);Serial.print(" -&gt; "); Serial.println(configuration.TRANSMISSION_MODE.getRSSIEnableByteDescription());
Serial.print(F("TransModeFixedTrans: "));  Serial.print(configuration.TRANSMISSION_MODE.fixedTransmission, BIN);Serial.print(" -&gt; "); Serial.println(configuration.TRANSMISSION_MODE.getFixedTransmissionDescription());


Serial.println("----------------------------------------");

}

In the same way, setConfiguration wants a configuration structure, so I think the better way to manage configuration is to retrieve the current one, apply the only change you need and set It again.

		ResponseStatus setConfiguration(Configuration configuration, PROGRAM_COMMAND saveType = WRITE_CFG_PWR_DWN_LOSE);

configuration is the structure previously shown, saveType permit you to choose if the change becomes permanent or only for the current session.

	ResponseStructContainer c;
	c = e32ttl100.getConfiguration();
	// It's important get configuration pointer before all other operation
	Configuration configuration = *(Configuration*) c.data;
	Serial.println(c.status.getResponseDescription());
	Serial.println(c.status.code);
printParameters(configuration);
configuration.ADDL = 0x03;  // First part of address
configuration.ADDH = 0x00; // Second part

configuration.CHAN = 23; // Communication channel

configuration.SPED.uartBaudRate = UART_BPS_9600; // Serial baud rate
configuration.SPED.airDataRate = AIR_DATA_RATE_010_24; // Air baud rate
configuration.SPED.uartParity = MODE_00_8N1; // Parity bit

configuration.OPTION.subPacketSetting = SPS_200_00; // Packet size
configuration.OPTION.RSSIAmbientNoise = RSSI_AMBIENT_NOISE_DISABLED; // Need to send special command
configuration.OPTION.transmissionPower = POWER_22; // Device power

configuration.TRANSMISSION_MODE.enableRSSI = RSSI_DISABLED; // Enable RSSI info
configuration.TRANSMISSION_MODE.fixedTransmission = FT_TRANSPARENT_TRANSMISSION; // Enable repeater mode
configuration.TRANSMISSION_MODE.enableLBT = LBT_DISABLED; // Check interference
configuration.TRANSMISSION_MODE.WORPeriod = WOR_2000_011; // WOR timing

// Set configuration changed and set to not hold the configuration
ResponseStatus rs = e32ttl100.setConfiguration(configuration, WRITE_CFG_PWR_DWN_LOSE);
Serial.println(rs.getResponseDescription());
Serial.println(rs.code);
printParameters(configuration);
c.close()

The parameters are all managed as constant:

Basic configuration option

NameDescriptionAddress
ADDHHigh address byte of the module (the default 00H)00H
ADDLLow address byte of the module (the default 00H)01H
SPEDInformation about data rate parity bit and Air data rate02H
OPTION Type of transmission, packet size, allow the special message 03H
CHANCommunication channel(410M + CHAN*1M), default 17H (433MHz), valid only for 433MHz device check below to check the correct frequency of your device04H
OPTIONType of transmission, packet size, allow the special message05H
TRANSMISSION_MODEA lot of parameters that specify the transmission modality06H
CRYPTEncryption to avoid interception07H

SPED detail

UART Parity bit: UART mode can be different between communication parties

UART parity bitConstant value
8N1 (default)MODE_00_8N1
8O1MODE_01_8O1
8E1MODE_10_8E1
8N1 (equal to 00)MODE_11_8N1

UART baud rate: UART baud rate can be different between communication parties (but not reccomended). The UART baud rate has nothing to do with wireless transmission parameters & won’t affect the wireless transmit/receive features.

TTL UART baud rate(bps)Constant value
1200UART_BPS_1200
2400UART_BPS_2400
4800UART_BPS_4800
9600 (default)UART_BPS_9600
19200UART_BPS_19200
38400UART_BPS_38400
57600UART_BPS_57600
115200UART_BPS_115200

Air data rate: The lower the air data rate, the longer the transmitting distance, better anti-interference performance, and longer transmitting time; the air data rate must be constant for both communication parties.

Air data rate(bps) Constant value
2.4k AIR_DATA_RATE_000_24
2.4k AIR_DATA_RATE_001_24
2.4k (default)AIR_DATA_RATE_010_24
4.8kAIR_DATA_RATE_011_48
9.6kAIR_DATA_RATE_100_96
19.2kAIR_DATA_RATE_101_192
38.4kAIR_DATA_RATE_110_384
62.5kAIR_DATA_RATE_111_625

OPTION detail

Sub packet setting

This is the max length of the packet.

When the data is smaller than the subpacket length, the serial output of the receiving end is an uninterrupted continuous output. The receiving end serial port will output the subpacket when the data is larger than the subpacket length.

Packet size Constant value
200bytes (default)SPS_200_00
128bytesSPS_128_01
64bytesSPS_064_10
32bytesSPS_032_11

RSSI Ambient noise enable

This command can enable/disable the management type of RSSI, and It’s essential to manage the remote configuration. Pay attention isn’t the RSSI parameter in the message.

When enabled, the C0, C1, C2, C3 commands can be sent in the transmitting mode or WOR transmitting mode to read the register. Register 0x00: Current ambient noise RSSI Register 0X01: RSSI when the data was received last time.

RSSI Ambient noise enable Constant value
EnableRSSI_AMBIENT_NOISE_ENABLED
Disable (default)RSSI_AMBIENT_NOISE_DISABLED

Transmission power

You can change this set of constants by applying a define like so:

#define E220_22 // default value without set 

Applicable for E220 with 22dBm as max power.
Low power transmission is not recommended due to its low power supply efficiency.

Transmission power (approximation) Constant value
22dBm (default)POWER_22
17dBmPOWER_17
13dBmPOWER_13
10dBmPOWER_10

Applicable for E220 with 30dBm as max power.
Low power transmission is not recommended due to its low power supply efficiency.

#define E220_30
Transmission power (approximation) Constant value
30dBm (default)POWER_30
27dBmPOWER_27
24dBmPOWER_24
21dBmPOWER_21

You can configure Channel frequency also with this define:

// One of 
#define FREQUENCY_433 
#define FREQUENCY_170
#define FREQUENCY_470
#define FREQUENCY_868
#define FREQUENCY_915

TRANSMISSION_MODE Detail

Enable RSSI

When enabled, the module receives wireless data, and it will follow an RSSI strength byte after output via the serial port TXD

Enable RSSI Constant value
EnableRSSI_ENABLED
Disable (default)RSSI_DISABLED

Transmission type

Transmission mode: The first three bytes of each user’s data frame can be used as high/low address and channel in fixed transmission mode. The module changes its address and channel when transmitted. And it will revert to the original setting after completing the process.

Fixed transmission enabling bit Constant value
Fixed transmission modeFT_FIXED_TRANSMISSION
Transparent transmission mode (default)FT_TRANSPARENT_TRANSMISSION

Monitor data before transmission

When enabled, wireless data will be monitored before it is transmitted, avoiding interference to a certain extent, but may cause data delay.

LBT enable byte Constant value
EnableLBT_ENABLED
Disable (default)LBT_DISABLED

WOR cycle

If WOR is transmitting: after the WOR receiver receives the wireless data and outputs it through the serial port, it will wait for 1000ms before entering the WOR again. Users can input the serial port data and return it via wireless during this period. Each serial byte will be refreshed for 1000ms. Users must transmit the first byte within 1000ms.

  • Period T = (1 + WOR) * 500ms, maximum 4000ms, minimum 500ms
  • The longer the WOR monitoring interval period, the lower the average power consumption, but the greater the data delay
  • Both the transmitter and the receiver must be the same (very important).
Wireless wake-up time Constant value
500msWAKE_UP_500
1000msWAKE_UP_1000
1500msWAKE_UP_1500
2000ms (default)WAKE_UP_2000
2500msWAKE_UP_2500
3000msWAKE_UP_3000
3500msWAKE_UP_3500
4000msWAKE_UP_4000

Check buffer

First, we must introduce a simple but practical method to check if something is in the receiving buffer.

int available();

It’s simple to return how many bytes you have in the current stream.

Send receive messages

Normal transmission mode

Normal/Transparent transmission mode sends messages to all devices with the same address and channel.

There are a lot of methods to send/receive messages, and we are going to explain in detail:

        ResponseStatus sendMessage(const String message);
        ResponseContainer receiveMessage();

The first method is sendMessage and is used to send a String to a device in Normal mode.

	ResponseStatus rs = e220ttl.sendMessage("Prova");
	Serial.println(rs.getResponseDescription());

The other device simply does on the loop.

       if (e220ttl.available()  > 1){
		ResponseContainer rs = e220ttl.receiveMessage();
		String message = rs.data; // First ever get the data
		Serial.println(rs.status.getResponseDescription());
		Serial.println(message);
	}

Pay attention if you receive multiple messages in the buffer and don’t want to read them all at one time. You must use ResponseContainer rs = e220ttl.receiveMessageUntil(); with a delimiter put on the end of sending a message.

If you enabled the RSSI, you must use receiveMessageRSSI.

Manage structure

If you want to send a complex structure, you can use this method

        ResponseStatus sendMessage(const void *message, const uint8_t size);
        ResponseStructContainer receiveMessage(const uint8_t size);

It’s used to send structure, for example:

	struct Messaggione {
		char type[5];
		char message[8];
		bool mitico;
	};
        struct Messaggione messaggione = {"TEMP", "Peple", true};
        ResponseStatus rs = e220ttl.sendMessage(&messaggione, sizeof(Messaggione));
	Serial.println(rs.getResponseDescription());

and the other side you can receive the message so

		ResponseStructContainer rsc = e22ttl.receiveMessage(sizeof(Messaggione));
		struct Messaggione messaggione = *(Messaggione*) rsc.data;
		Serial.println(messaggione.message);
		Serial.println(messaggione.mitico);
        rsc.close();

If you enabled the RSSI, you must use receiveMessageRSSI.

Read partial structure

If you want to read the first part of the message to manage more types of structure, you can use this method.

ResponseContainer receiveInitialMessage(const uint8_t size);

I create It to receive a string with type or other to identify the structure to load.

		struct Messaggione { // Partial structure without type
			char message[8];
			bool mitico;
		};
	char type[5]; // first part of structure
	ResponseContainer rs = e220ttl.receiveInitialMessage(sizeof(type));
            // Put string in a char array (not needed)
	memcpy ( type, rs.data.c_str(), sizeof(type) );

	Serial.println("READ TYPE: ");
	Serial.println(rs.status.getResponseDescription());
	Serial.println(type);

            // Read the rest of structure
	ResponseStructContainer rsc = e220ttl.receiveMessage(sizeof(Messaggione));
	struct Messaggione messaggione = *(Messaggione*) rsc.data;
    rsc.close();

Fixed mode instead of normal mode

Similarly, I create a set of methods to use with the fixed transmission.

Fixed transmission

You need to change only the sending method because the destination device doesn’t receive the preamble with Address and Channel when setting the fixed mode.

So for the String message, you have

        ResponseStatus sendFixedMessage(byte ADDH, byte ADDL, byte CHAN, const String message);
        ResponseStatus sendBroadcastFixedMessage(byte CHAN, const String message);

and for the structure, you have

        ResponseStatus sendFixedMessage(byte ADDH, byte ADDL, byte CHAN, const void *message, const uint8_t size);
        ResponseStatus sendBroadcastFixedMessage(byte CHAN, const void *message, const uint8_t size );

Here is a simple example

	ResponseStatus rs = e220ttl.sendFixedMessage(0, 0, 0x17, &messaggione, sizeof(Messaggione));
//	ResponseStatus rs = e220ttl.sendFixedMessage(0, 0, 0x17, "Ciao");

Fixed transmission have more scenarios

If you send to a specific device (second scenario Fixed transmission), you must add ADDL, ADDH, and CHAN to identify It directly.

ResponseStatus rs = e220ttl.sendFixedMessage(2, 2, 0x17, "Message to a device");

If you want to send a message to all devices in a specified Channel, you can use this method.

ResponseStatus rs = e220ttl.sendBroadcastFixedMessage(0x17, "Message to a devices of a channel");

If you wish to receive all broadcast messages in the network, you must set your ADDH and ADDL with BROADCAST_ADDRESS.

        ResponseStructContainer c;
	c = e220ttl.getConfiguration();
	// It's important get configuration pointer before all other operation
	Configuration configuration = *(Configuration*) c.data;
	Serial.println(c.status.getResponseDescription());
	Serial.println(c.status.code);
printParameters(configuration);
configuration.ADDL = BROADCAST_ADDRESS;
configuration.ADDH = BROADCAST_ADDRESS;

// Set configuration changed and set to not hold the configuration
ResponseStatus rs = e32ttl100.setConfiguration(configuration, WRITE_CFG_PWR_DWN_LOSE);
Serial.println(rs.getResponseDescription());
Serial.println(rs.code);
printParameters(configuration);
    c.close();

Thanks

Now you have all information to do your work, but I think It’s important to show some real examples to understand better all the possibilities.

  1. Ebyte LoRa E220 device for Arduino, esp32 or esp8266: settings and basic usage
  2. Ebyte LoRa E220 device for Arduino, esp32 or esp8266: library
  3. Ebyte LoRa E220 device for Arduino, esp32 or esp8266: configuration
  4. Ebyte LoRa E220 device for Arduino, esp32 or esp8266: fixed transmission, broadcast, monitor, and RSSI
  5. Ebyte LoRa E220 device for Arduino, esp32 or esp8266: power saving and sending structured data
  6. Ebyte LoRa E220 device for Arduino, esp32 or esp8266: WOR microcontroller and Arduino shield
  7. Ebyte LoRa E220 device for Arduino, esp32 or esp8266: WOR microcontroller and WeMos D1 shield
  8. Ebyte LoRa E220 device for Arduino, esp32 or esp8266: WOR microcontroller and esp32 dev v1 shield

Github library