forked from Shivi91/Rosalind-1
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy path081_LOCA.py
63 lines (48 loc) · 2.07 KB
/
081_LOCA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#!/usr/bin/env python
'''
A solution to a ROSALIND bioinformatics problem.
Problem Title: Local Alignment with Scoring Matrix
Rosalind ID: LOCA
Rosalind #: 081
URL: http://rosalind.info/problems/loca/
'''
from scripts import PAM250, ReadFASTA
def local_alignment(v, w, scoring_matrix, sigma):
'''Returns the score and local alignment with the given scoring matrix and indel penalty sigma for strings v, w.'''
from numpy import unravel_index, zeros
# Initialize the matrices.
S = zeros((len(v)+1, len(w)+1), dtype=int)
backtrack = zeros((len(v)+1, len(w)+1), dtype=int)
# Fill in the Score and Backtrack matrices.
for i in xrange(1, len(v)+1):
for j in xrange(1, len(w)+1):
scores = [S[i-1][j] - sigma, S[i][j-1] - sigma, S[i-1][j-1] + scoring_matrix[v[i-1], w[j-1]], 0]
S[i][j] = max(scores)
backtrack[i][j] = scores.index(S[i][j])
# Get the position of the highest scoring cell in the matrix and the high score.
i,j = unravel_index(S.argmax(), S.shape)
max_score = str(S[i][j])
# Initialize the aligned strings as the input strings up to the position of the high score.
v_aligned, w_aligned = v[:i], w[:j]
# Backtrack to start of the local alignment starting at the highest scoring cell.
while backtrack[i][j] != 3 and i*j != 0:
if backtrack[i][j] == 0:
i -= 1
elif backtrack[i][j] == 1:
j -= 1
elif backtrack[i][j] == 2:
i -= 1
j -= 1
# Cut the strings at the ending point of the backtrack.
v_aligned = v_aligned[i:]
w_aligned = w_aligned[j:]
return max_score, v_aligned, w_aligned
if __name__ == '__main__':
# Parse the two input protein strings.
s, t = [fasta[1] for fasta in ReadFASTA('data/rosalind_loca.txt')]
# Get the local alignment (given sigma = 5 in problem statement).
alignment = local_alignment(s, t, PAM250(), 5)
# Print and save the answer.
print '\n'.join(alignment)
with open('output/081_LOCA.txt', 'w') as output_data:
output_data.write('\n'.join(alignment))