-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy pathwidar_model.py
381 lines (326 loc) · 12.6 KB
/
widar_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, reduce, repeat
from einops.layers.torch import Rearrange, Reduce
class Widar_MLP(nn.Module):
def __init__(self, num_classes):
super(Widar_MLP,self).__init__()
self.fc = nn.Sequential(
nn.Linear(22*20*20,1024),
nn.ReLU(),
nn.Linear(1024,128),
nn.ReLU(),
nn.Linear(128,num_classes)
)
def forward(self,x):
x = x.view(-1,22*20*20)
x = self.fc(x)
return x
class Widar_LeNet(nn.Module):
def __init__(self, num_classes):
super(Widar_LeNet,self).__init__()
self.encoder = nn.Sequential(
#input size: (22,20,20)
nn.Conv2d(22,32,6,stride=2),
nn.ReLU(True),
nn.Conv2d(32,64,3,stride=1),
nn.ReLU(True),
nn.Conv2d(64,96,3,stride=1),
nn.ReLU(True),
)
self.fc = nn.Sequential(
nn.Linear(96*4*4,128),
nn.ReLU(),
nn.Linear(128,num_classes)
)
def forward(self,x):
x = self.encoder(x)
x = x.view(-1,96*4*4)
out = self.fc(x)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, in_channels, out_channels, i_downsample=None, stride=1):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
self.batch_norm1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride, padding=1)
self.batch_norm2 = nn.BatchNorm2d(out_channels)
self.conv3 = nn.Conv2d(out_channels, out_channels*self.expansion, kernel_size=1, stride=1, padding=0)
self.batch_norm3 = nn.BatchNorm2d(out_channels*self.expansion)
self.i_downsample = i_downsample
self.stride = stride
self.relu = nn.ReLU()
def forward(self, x):
identity = x.clone()
x = self.relu(self.batch_norm1(self.conv1(x)))
x = self.relu(self.batch_norm2(self.conv2(x)))
x = self.conv3(x)
x = self.batch_norm3(x)
#downsample if needed
if self.i_downsample is not None:
identity = self.i_downsample(identity)
#add identity
x+=identity
x=self.relu(x)
return x
class Block(nn.Module):
expansion = 1
def __init__(self, in_channels, out_channels, i_downsample=None, stride=1):
super(Block, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1, stride=1, bias=False)
self.batch_norm1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1, stride=stride, bias=False)
self.batch_norm2 = nn.BatchNorm2d(out_channels)
self.i_downsample = i_downsample
self.stride = stride
self.relu = nn.ReLU()
def forward(self, x):
identity = x.clone()
x = self.relu(self.batch_norm1(self.conv1(x)))
x = self.batch_norm2(self.conv2(x))
if self.i_downsample is not None:
identity = self.i_downsample(identity)
x += identity
x = self.relu(x)
return x
class Widar_ResNet(nn.Module):
def __init__(self, ResBlock, layer_list, num_classes):
super(Widar_ResNet, self).__init__()
self.reshape = nn.Sequential(
nn.ConvTranspose2d(22,3,7,stride=1),
nn.ReLU(),
nn.ConvTranspose2d(3,3,kernel_size=7,stride=1),
nn.ReLU()
)
self.in_channels = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.batch_norm1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU()
self.max_pool = nn.MaxPool2d(kernel_size = 3, stride=2, padding=1)
self.layer1 = self._make_layer(ResBlock, layer_list[0], planes=64)
self.layer2 = self._make_layer(ResBlock, layer_list[1], planes=128, stride=2)
self.layer3 = self._make_layer(ResBlock, layer_list[2], planes=256, stride=2)
self.layer4 = self._make_layer(ResBlock, layer_list[3], planes=512, stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1,1))
self.fc = nn.Linear(512*ResBlock.expansion, num_classes)
def forward(self, x):
x = self.reshape(x)
x = self.relu(self.batch_norm1(self.conv1(x)))
x = self.max_pool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.reshape(x.shape[0], -1)
x = self.fc(x)
return x
def _make_layer(self, ResBlock, blocks, planes, stride=1):
ii_downsample = None
layers = []
if stride != 1 or self.in_channels != planes*ResBlock.expansion:
ii_downsample = nn.Sequential(
nn.Conv2d(self.in_channels, planes*ResBlock.expansion, kernel_size=1, stride=stride),
nn.BatchNorm2d(planes*ResBlock.expansion)
)
layers.append(ResBlock(self.in_channels, planes, i_downsample=ii_downsample, stride=stride))
self.in_channels = planes*ResBlock.expansion
for i in range(blocks-1):
layers.append(ResBlock(self.in_channels, planes))
return nn.Sequential(*layers)
def Widar_ResNet18(num_classes):
return Widar_ResNet(Block, [2,2,2,2], num_classes = num_classes)
def Widar_ResNet50(num_classes):
return Widar_ResNet(Bottleneck, [3,4,6,3], num_classes = num_classes)
def Widar_ResNet101(num_classes):
return Widar_ResNet(Bottleneck, [3,4,23,3], num_classes = num_classes)
class Widar_RNN(nn.Module):
def __init__(self,num_classes):
super(Widar_RNN,self).__init__()
self.rnn = nn.RNN(400,64,num_layers=1)
self.fc = nn.Linear(64,num_classes)
def forward(self,x):
x = x.view(-1,22,400)
x = x.permute(1,0,2)
_, ht = self.rnn(x)
outputs = self.fc(ht[-1])
return outputs
class Widar_GRU(nn.Module):
def __init__(self,num_classes):
super(Widar_GRU,self).__init__()
self.gru = nn.GRU(400,64,num_layers=1)
self.fc = nn.Linear(64,num_classes)
def forward(self,x):
x = x.view(-1,22,400)
x = x.permute(1,0,2)
_, ht = self.gru(x)
outputs = self.fc(ht[-1])
return outputs
class Widar_LSTM(nn.Module):
def __init__(self,num_classes):
super(Widar_LSTM,self).__init__()
self.lstm = nn.LSTM(400,64,num_layers=1)
self.fc = nn.Linear(64,num_classes)
def forward(self,x):
x = x.view(-1,22,400)
x = x.permute(1,0,2)
_, (ht,ct) = self.lstm(x)
outputs = self.fc(ht[-1])
return outputs
class Widar_BiLSTM(nn.Module):
def __init__(self,num_classes):
super(Widar_BiLSTM,self).__init__()
self.lstm = nn.LSTM(400,64,num_layers=1,bidirectional=True)
self.fc = nn.Linear(64,num_classes)
def forward(self,x):
x = x.view(-1,22,400)
x = x.permute(1,0,2)
_, (ht,ct) = self.lstm(x)
outputs = self.fc(ht[-1])
return outputs
class Widar_CNN_GRU(nn.Module):
def __init__(self,num_classes):
super(Widar_CNN_GRU,self).__init__()
self.encoder = nn.Sequential(
nn.Conv2d(1,8,6,2),
nn.ReLU(),
nn.Conv2d(8,16,3,1),
nn.ReLU(),
nn.MaxPool2d(2)
)
self.fc = nn.Sequential(
nn.Linear(16*3*3,64),
nn.ReLU(),
nn.Dropout(p=0.5),
nn.Linear(64,64),
nn.ReLU(),
)
self.gru = nn.GRU(64,128,num_layers=1)
self.classifier = nn.Sequential(
nn.Dropout(0.5),
nn.Linear(128,num_classes),
nn.Softmax(dim=1)
)
def forward(self,x):
batch_size = len(x)
# batch x 22 x 20 x 20
x = x.view(batch_size*22,1,20,20)
# 22*batch x 1 x 20 x 20
x = self.encoder(x)
# 22*batch x 16 x 3 x 3
x = x.view(-1,16*3*3)
x = self.fc(x)
# 22*batch x 64
x = x.view(-1,22,64)
x = x.permute(1,0,2)
# 22 x batch x 64
_, ht = self.gru(x)
outputs = self.classifier(ht[-1])
return outputs
class PatchEmbedding(nn.Module):
def __init__(self, in_channels = 1, patch_size_w = 2, patch_size_h = 40, emb_size = 2*40, img_size = 22*400):
self.patch_size_w = patch_size_w
self.patch_size_h = patch_size_h
super().__init__()
self.projection = nn.Sequential(
nn.Conv2d(in_channels, emb_size, kernel_size = (patch_size_w, patch_size_h), stride = (patch_size_w, patch_size_h)),
Rearrange('b e (h) (w) -> b (h w) e'),
)
self.cls_token = nn.Parameter(torch.randn(1,1,emb_size))
self.position = nn.Parameter(torch.randn(int(img_size/emb_size) + 1, emb_size))
def forward(self, x):
x = x.view(-1,1,22,400)
b, _, _, _ = x.shape
x = self.projection(x)
cls_tokens = repeat(self.cls_token, '() n e -> b n e', b=b)
x = torch.cat([cls_tokens, x], dim=1)
x += self.position
return x
class MultiHeadAttention(nn.Module):
def __init__(self, emb_size = 80, num_heads = 5, dropout = 0.0):
super().__init__()
self.emb_size = emb_size
self.num_heads = num_heads
self.qkv = nn.Linear(emb_size, emb_size*3)
self.att_drop = nn.Dropout(dropout)
self.projection = nn.Linear(emb_size, emb_size)
def forward(self, x, mask = None):
qkv = rearrange(self.qkv(x), "b n (h d qkv) -> (qkv) b h n d", h=self.num_heads, qkv=3)
queries, keys, values = qkv[0], qkv[1], qkv[2]
energy = torch.einsum('bhqd, bhkd -> bhqk', queries, keys)
if mask is not None:
fill_value = torch.finfo(torch.float32).min
energy.mask_fill(~mask, fill_value)
scaling = self.emb_size ** (1/2)
att = F.softmax(energy, dim=-1) / scaling
att = self.att_drop(att)
# sum up over the third axis
out = torch.einsum('bhal, bhlv -> bhav ', att, values)
out = rearrange(out, "b h n d -> b n (h d)")
out = self.projection(out)
return out
class ResidualAdd(nn.Module):
def __init__(self, fn):
super().__init__()
self.fn = fn
def forward(self, x, **kwargs):
res = x
x = self.fn(x, **kwargs)
x += res
return x
class FeedForwardBlock(nn.Sequential):
def __init__(self, emb_size, expansion = 4, drop_p = 0.):
super().__init__(
nn.Linear(emb_size, expansion * emb_size),
nn.GELU(),
nn.Dropout(drop_p),
nn.Linear(expansion * emb_size, emb_size),
)
class TransformerEncoderBlock(nn.Sequential):
def __init__(self,
emb_size = 80,
drop_p = 0.5,
forward_expansion = 4,
forward_drop_p = 0.,
** kwargs):
super().__init__(
ResidualAdd(nn.Sequential(
nn.LayerNorm(emb_size),
MultiHeadAttention(emb_size, **kwargs),
nn.Dropout(drop_p)
)),
ResidualAdd(nn.Sequential(
nn.LayerNorm(emb_size),
FeedForwardBlock(
emb_size, expansion=forward_expansion, drop_p=forward_drop_p),
nn.Dropout(drop_p)
)
))
class TransformerEncoder(nn.Sequential):
def __init__(self, depth = 1, **kwargs):
super().__init__(*[TransformerEncoderBlock(**kwargs) for _ in range(depth)])
class ClassificationHead(nn.Sequential):
def __init__(self, emb_size, num_classes):
super().__init__(
Reduce('b n e -> b e', reduction='mean'),
nn.LayerNorm(emb_size),
nn.Linear(emb_size, num_classes))
class Widar_ViT(nn.Sequential):
def __init__(self,
in_channels = 1,
patch_size_w = 2,
patch_size_h = 40,
emb_size = 80,
img_size = 22*400,
depth = 1,
*,
num_classes,
**kwargs):
super().__init__(
PatchEmbedding(in_channels, patch_size_w, patch_size_h, emb_size, img_size),
TransformerEncoder(depth, emb_size=emb_size, **kwargs),
ClassificationHead(emb_size, num_classes)
)