-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path24_MinDeletion_toMakeString_Palindrome.cpp
42 lines (35 loc) · 1.26 KB
/
24_MinDeletion_toMakeString_Palindrome.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
// Question Link :- https://www.geeksforgeeks.org/problems/minimum-number-of-deletions4610/1
// Minimum number of deletions to make string Palindrome
// Question Link :- https://leetcode.com/problems/minimum-insertion-steps-to-make-a-string-palindrome/
// Minimum Insertion Steps to Make a String Palindrome
// Brute Force (Recursion)
// T.C = O(2^n)
// S.C = O(n)
// Better Solution (Tabulation)
// T.C = O(n^2)
// S.C = O(n^2)
int LCS(string X, string Y, int n, int m) {
int dp[n + 1][m + 1];
for (int i = 0; i <= n; i++) {
for (int j = 0; j <= m; j++) {
if (i == 0 || j == 0) {
dp[i][j] = 0;
}
}
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
if (X[i - 1] == Y[j - 1]) { // when last character is same
dp[i][j] = 1 + dp[i - 1][j - 1];
} else { // when last character is not same -> pick max
dp[i][j] = max(dp[i][j - 1], dp[i - 1][j]);
}
}
}
return dp[n][m];
}
int minDeletions(string str, int n) {
string rev_str = str;
reverse(rev_str.begin(), rev_str.end());
return n - LCS(str, rev_str, n, n); // n - Longest palindromic subsequence length
}