-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbertbase.cpp
378 lines (324 loc) · 12.7 KB
/
bertbase.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
#include "tokenization.h"
#include "bertbase.h"
#include "ggml.h"
#include <cassert>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <map>
#include <string>
#include <vector>
#include <iostream>
#include <regex>
#include <thread>
#include <algorithm>
#include <iomanip>
#include <limits>
namespace bert {
static std::string shape_to_string(ggml_tensor *tensor) {
std::ostringstream oss;
oss << '[';
for (int i = tensor->n_dims - 1; i >= 0; i--) {
oss << tensor->ne[i] << (i > 0 ? ", " : "");
}
oss << ']';
return oss.str();
}
static std::string strides_to_string(ggml_tensor *tensor) {
std::ostringstream oss;
oss << '[';
for (int i = tensor->n_dims - 1; i >= 0; i--) {
oss << tensor->nb[i] << (i > 0 ? ", " : "");
}
oss << ']';
return oss.str();
}
std::string to_string(ggml_tensor *tensor, bool with_data) {
std::ostringstream oss;
oss << "ggml_tensor(";
if (with_data) {
if (tensor->n_dims > 3)
oss << "[";
for (int i3 = 0; i3 < tensor->ne[3]; i3++) {
if (tensor->n_dims > 2)
oss << (i3 > 0 ? ",\n\n[" : "[");
for (int i2 = 0; i2 < tensor->ne[2]; i2++) {
if (tensor->n_dims > 1)
oss << (i2 > 0 ? ",\n\n[" : "[");
for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
oss << (i1 > 0 ? ",\n[" : "[");
for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
auto ptr = (char *)tensor->data + i3 * tensor->nb[3] + i2 * tensor->nb[2] + i1 * tensor->nb[1] +
i0 * tensor->nb[0];
//float val;
oss << ", ";
if (tensor->type == GGML_TYPE_F32) {
oss << *(float *)ptr;
} else if (tensor->type == GGML_TYPE_F16) {
oss << ggml_fp16_to_fp32(*(ggml_fp16_t *)ptr);
} else if (tensor->type == GGML_TYPE_I32) {
oss << *(int *)ptr;
} else {
oss << "unimplemented";
}
//oss << (i0 > 0 ? ", " : "") << std::setw(7) << std::fixed << std::setprecision(4) << val;
}
oss << "]";
}
if (tensor->n_dims > 1)
oss << "]";
}
if (tensor->n_dims > 2)
oss << "]";
}
if (tensor->n_dims > 3)
oss << "]";
oss << ", ";
}
oss << "shape=" << shape_to_string(tensor) << ", stride=" << strides_to_string(tensor) << ")";
return oss.str();
}
void print_ggml_tensor(const char *info, ggml_tensor *tensor) {
#ifdef _DEBUG_
std::cout<<std::endl<<info<<" : "<<std::endl;
printf ("ne[0]:%d, ne[1]:%d, ne[2]:%d, ne[3]:%d\n", tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
printf ("nb[0]:%d, nb[1]:%d, nb[2]:%d, nb[3]:%d\n", tensor->nb[0], tensor->nb[1], tensor->nb[2], tensor->nb[3]);
#endif
}
void bert_print_usage(char **argv, const BertParams ¶ms) {
fprintf(stderr, "usage: %s [options]\n", argv[0]);
fprintf(stderr, "\n");
fprintf(stderr, "options:\n");
fprintf(stderr, " --vocab FNAME vocab file path \n");
fprintf(stderr, " -h, --help show this help message and exit\n");
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
fprintf(stderr, " -p PROMPT, --prompt PROMPT\n");
fprintf(stderr, " prompt to start generation with (default: random)\n");
fprintf(stderr, " --port p port to bind in server mode (default: %d)\n", params.port);
fprintf(stderr, " -m FNAME, --model FNAME\n");
fprintf(stderr, " model path (default: %s)\n", params.model);
fprintf(stderr, "\n");
}
int32_t bert_n_embd(BertBaseCtx * ctx) {
return ctx->hparams.n_embd;
}
int32_t bert_n_max_tokens(BertBaseCtx * ctx) {
return ctx->hparams.max_position_embeddings;
}
bool bert_params_parse(int argc, char **argv, BertParams ¶ms) {
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];
if (arg == "-t" || arg == "--threads") {
params.n_threads = std::stoi(argv[++i]);
} else if (arg == "-p" || arg == "--prompt") {
params.prompt = argv[++i];
} else if (arg == "--vocab") {
params.vocab = argv[++i];
} else if (arg == "--port") {
params.port = std::stoi(argv[++i]);
} else if (arg == "-m" || arg == "--model") {
params.model = argv[++i];
} else if (arg == "-h" || arg == "--help") {
bert_print_usage(argv, params);
exit(0);
} else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
bert_print_usage(argv, params);
exit(0);
}
}
return true;
}
void bert_resize_ctx(BertBaseCtx * ctx, int32_t new_size) {
int64_t buf_size_new = ctx->mem_per_input * new_size;
// TODO: Max memory should be a param? Now just 1 GB
int64_t GB = 1 << 30;
//printf("%s: requested_buf_size %lldMB\n", __func__, buf_size_new / (1 << 20));
if (buf_size_new > GB) {
int32_t adjusted_new_size = GB / ctx->mem_per_input;
if (adjusted_new_size < 1) adjusted_new_size = 1;
//printf("%s: requested batch size %d, actual new batch size %d\n", __func__, new_size, adjusted_new_size);
new_size = adjusted_new_size;
buf_size_new = ctx->mem_per_input * new_size;
}
if (new_size > ctx->max_batch_n) {
ctx->buf_compute.resize(buf_size_new);
ctx->max_batch_n = new_size;
}
}
void bert_free(BertBaseCtx * ctx) {
delete ctx;
}
// Main api, does both tokenizing and evaluation
const char* bert_vocab_id_to_token(BertBaseCtx * ctx, bert_vocab_id id) {
BertVocab & vocab = ctx->vocab;
auto it = vocab._id_to_token.find(id);
if (it != vocab._id_to_token.end())
{
return it->second.c_str();
}
return "[UNK]";
}
const size_t bert_tokens_to_ids(BertBaseCtx * ctx, std::vector<std::string> token_chars, size_t max_length, bert_vocab_id *outids) {
const BertHiParams *hparams = &ctx->hparams;
auto *token_map = &ctx->vocab.token_to_id;
size_t index = 0;
outids[index++] = hparams->CLS;
//for(auto tokenit = token_chars.begin(); tokenit != token_chars.end(); tokenit++) {
for (int i = 0; i < token_chars.size(); ++i) {
auto tokenit = token_chars[i];
if (index >= max_length - 1) {
return index;
}
auto it = token_map->find(tokenit);
if (it != token_map->end()) {
outids[index++] = it->second;
} else {
if ((tokenit).compare("[UNK]")) {
outids[index++] = hparams->UNK;
} else if ((tokenit).compare("[PAD]")) {
outids[index++] = hparams->PAD;
} else if ((tokenit).compare("[MASK]")) {
outids[index++] = hparams->MASK;
} else {
outids[index++] = hparams->UNK;
}
}
}
outids[index++] = hparams->SEP;
//for ( ; index < max_length; ) {
// outids[index++] = hparams->PAD;
//}
return index;
}
void bert_encode_classify(
struct BertBaseCtx *ctx,
int32_t n_threads,
const char *texts,
float *labels)
{
bert_encode_batch_classify(ctx, n_threads, 1, 1, &texts, &labels);
}
void bert_encode_batch_classify(
struct BertBaseCtx *ctx,
int32_t n_threads,
int32_t n_batch_size,
int32_t n_inputs,
const char ** texts,
float **labels)
{
const BertHiParams *hparams = &ctx->hparams;
// TODO: Disable batching for now
if (n_batch_size > ctx->max_batch_n) {
n_batch_size = ctx->max_batch_n;
}
int32_t N = bert_n_max_tokens(ctx);
auto &tokenizer = ctx->tokenizer;
std::vector<bert_vocab_id> buf_tokens;
// Most of this buffer will be unused in typical case where inputs are not that long.
buf_tokens.resize(N * n_inputs);
std::vector<int32_t> n_tokens = std::vector<int32_t>(n_inputs);
std::vector<bert_vocab_id*> unsorted_tokens(n_inputs);
bert_vocab_id* it_tokens = buf_tokens.data();
for (int i = 0; i < n_inputs; i++) {
std::vector<std::string> token_chars;
ctx->tokenizer->tokenize(texts[i], &token_chars, N-2);
unsorted_tokens[i] = it_tokens;
n_tokens[i] = bert_tokens_to_ids(ctx, token_chars, N, it_tokens);
it_tokens += n_tokens[i];
}
if (n_batch_size == n_inputs) {
bert_eval_batch_classify(ctx, n_threads, n_batch_size, unsorted_tokens.data(), n_tokens.data(), labels);
} else if (n_batch_size > n_inputs) {
bert_eval_batch_classify(ctx, n_threads, n_inputs, unsorted_tokens.data(), n_tokens.data(), labels);
} else {
for (int i = 0; i < n_inputs; i += n_batch_size) {
if (i + n_batch_size > n_inputs) {
n_batch_size = n_inputs - i;
}
bert_eval_batch_classify(ctx, n_threads, n_batch_size, &unsorted_tokens[i], &n_tokens[i], &labels[i]);
}
}
}
void bert_eval_classify(
struct BertBaseCtx *ctx,
int32_t n_threads,
bert_vocab_id *tokens,
int32_t n_tokens,
float *labels)
{
bert_eval_batch_classify(ctx, n_threads, 1, &tokens, &n_tokens, labels ? &labels : nullptr);
}
void bert_eval_batch_classify(
BertBaseCtx * ctx,
int32_t n_threads,
int32_t n_batch_size,
bert_vocab_id **batch_tokens,
int32_t * n_tokens,
float ** batch_labels)
{
AbstractBertModel *model = ctx->model;
BertHiParams *hparams = &ctx->hparams;
bool mem_req_mode = !batch_labels;
// batch_embeddings is nullptr for the initial memory requirements run
if (!mem_req_mode && n_batch_size > ctx->max_batch_n) {
bert_resize_ctx(ctx, n_batch_size);
if (n_batch_size > ctx->max_batch_n) {
fprintf(stderr, "%s: tried to increase buffers to batch size %d but failed\n", __func__, n_batch_size);
return;
}
}
// TODO: implement real batching:
for (int ba = 0; ba < n_batch_size; ba++)
{
const int N = n_tokens[ba];
const auto &tokens = batch_tokens[ba];
const int n_embd = hparams->n_embd;
const int n_layer = hparams->n_layers;
const int N_MAX = hparams->max_position_embeddings;
const int n_head = hparams->n_heads;
const int n_labels = hparams->n_labels;
const int d_head = n_embd / n_head;
const float norm_eps = hparams->f_norm_eps;
std::vector<float> result;
if (N > N_MAX)
{
fprintf(stderr, "Too many tokens, maximum is %d\n", N_MAX);
return;
}
auto & mem_per_token = ctx->mem_per_token;
auto & buf_compute = ctx->buf_compute;
struct ggml_init_params params = {
.mem_size = buf_compute.size,
.mem_buffer = buf_compute.data,
.no_alloc = false,
};
struct ggml_context *ctx0 = ggml_init(params);
struct ggml_cgraph gf = {};
// Embeddings. word_embeddings + position_embeddings
// layers
ggml_tensor *output = model->forward(hparams, ctx0, tokens, N);
// run the computation
ggml_build_forward_expand(&gf, output);
ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
std::cout<<to_string(output, true)<<std::endl;
// float *dat = ggml_get_data_f32(output);
// pretty_print_tensor(dat, output->ne, output->nb, output->n_dims - 1, "");
#ifdef GGML_PERF
// print timing information per ggml operation (for debugging purposes)
// requires GGML_PERF to be defined
ggml_graph_print(&gf);
#endif
if (!mem_req_mode) {
memcpy(batch_labels[ba], (float *)ggml_get_data(output), sizeof(float) * n_labels);
} else {
mem_per_token = ggml_used_mem(ctx0) / N;
// printf("used_mem = %zu KB \n", ggml_used_mem(ctx0) / 1024);
printf("mem_per_token = %zu KB \n", mem_per_token / 1024);
}
ggml_free(ctx0);
}
}
}