-
Notifications
You must be signed in to change notification settings - Fork 653
/
Copy pathtrain_xl.py
797 lines (644 loc) · 36.2 KB
/
train_xl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
import os
import random
import argparse
import json
import itertools
import torch
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image
from transformers import CLIPImageProcessor
from accelerate import Accelerator
from accelerate.utils import ProjectConfiguration
from diffusers import AutoencoderKL, DDPMScheduler
from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection, CLIPTextModelWithProjection
from src.unet_hacked_tryon import UNet2DConditionModel
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
from ip_adapter.ip_adapter import Resampler
from diffusers.utils.import_utils import is_xformers_available
from typing import Literal, Tuple,List
import torch.utils.data as data
import math
from tqdm.auto import tqdm
from diffusers.training_utils import compute_snr
import torchvision.transforms.functional as TF
class VitonHDDataset(data.Dataset):
def __init__(
self,
dataroot_path: str,
phase: Literal["train", "test"],
order: Literal["paired", "unpaired"] = "paired",
size: Tuple[int, int] = (512, 384),
):
super(VitonHDDataset, self).__init__()
self.dataroot = dataroot_path
self.phase = phase
self.height = size[0]
self.width = size[1]
self.size = size
self.norm = transforms.Normalize([0.5], [0.5])
self.transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
self.transform2D = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]
)
self.toTensor = transforms.ToTensor()
with open(
os.path.join(dataroot_path, phase, "vitonhd_" + phase + "_tagged.json"), "r"
) as file1:
data1 = json.load(file1)
annotation_list = [
# "colors",
# "textures",
"sleeveLength",
"neckLine",
"item",
]
self.annotation_pair = {}
for k, v in data1.items():
for elem in v:
annotation_str = ""
for template in annotation_list:
for tag in elem["tag_info"]:
if (
tag["tag_name"] == template
and tag["tag_category"] is not None
):
annotation_str += tag["tag_category"]
annotation_str += " "
self.annotation_pair[elem["file_name"]] = annotation_str
self.order = order
self.toTensor = transforms.ToTensor()
im_names = []
c_names = []
dataroot_names = []
if phase == "train":
filename = os.path.join(dataroot_path, f"{phase}_pairs.txt")
else:
filename = os.path.join(dataroot_path, f"{phase}_pairs.txt")
with open(filename, "r") as f:
for line in f.readlines():
if phase == "train":
im_name, _ = line.strip().split()
c_name = im_name
else:
if order == "paired":
im_name, _ = line.strip().split()
c_name = im_name
else:
im_name, c_name = line.strip().split()
im_names.append(im_name)
c_names.append(c_name)
dataroot_names.append(dataroot_path)
self.im_names = im_names
self.c_names = c_names
self.dataroot_names = dataroot_names
self.flip_transform = transforms.RandomHorizontalFlip(p=1)
self.clip_processor = CLIPImageProcessor()
def __getitem__(self, index):
c_name = self.c_names[index]
im_name = self.im_names[index]
# subject_txt = self.txt_preprocess['train']("shirt")
if c_name in self.annotation_pair:
cloth_annotation = self.annotation_pair[c_name]
else:
cloth_annotation = "shirts"
cloth = Image.open(os.path.join(self.dataroot, self.phase, "cloth", c_name))
im_pil_big = Image.open(
os.path.join(self.dataroot, self.phase, "image", im_name)
).resize((self.width,self.height))
image = self.transform(im_pil_big)
# load parsing image
mask = Image.open(os.path.join(self.dataroot, self.phase, "agnostic-mask", im_name.replace('.jpg','_mask.png'))).resize((self.width,self.height))
mask = self.toTensor(mask)
mask = mask[:1]
densepose_name = im_name
densepose_map = Image.open(
os.path.join(self.dataroot, self.phase, "image-densepose", densepose_name)
)
pose_img = self.toTensor(densepose_map) # [-1,1]
if self.phase == "train":
if random.random() > 0.5:
cloth = self.flip_transform(cloth)
mask = self.flip_transform(mask)
image = self.flip_transform(image)
pose_img = self.flip_transform(pose_img)
if random.random()>0.5:
color_jitter = transforms.ColorJitter(brightness=0.5, contrast=0.3, saturation=0.5, hue=0.5)
fn_idx, b, c, s, h = transforms.ColorJitter.get_params(color_jitter.brightness, color_jitter.contrast, color_jitter.saturation,color_jitter.hue)
image = TF.adjust_contrast(image, c)
image = TF.adjust_brightness(image, b)
image = TF.adjust_hue(image, h)
image = TF.adjust_saturation(image, s)
cloth = TF.adjust_contrast(cloth, c)
cloth = TF.adjust_brightness(cloth, b)
cloth = TF.adjust_hue(cloth, h)
cloth = TF.adjust_saturation(cloth, s)
if random.random() > 0.5:
scale_val = random.uniform(0.8, 1.2)
image = transforms.functional.affine(
image, angle=0, translate=[0, 0], scale=scale_val, shear=0
)
mask = transforms.functional.affine(
mask, angle=0, translate=[0, 0], scale=scale_val, shear=0
)
pose_img = transforms.functional.affine(
pose_img, angle=0, translate=[0, 0], scale=scale_val, shear=0
)
if random.random() > 0.5:
shift_valx = random.uniform(-0.2, 0.2)
shift_valy = random.uniform(-0.2, 0.2)
image = transforms.functional.affine(
image,
angle=0,
translate=[shift_valx * image.shape[-1], shift_valy * image.shape[-2]],
scale=1,
shear=0,
)
mask = transforms.functional.affine(
mask,
angle=0,
translate=[shift_valx * mask.shape[-1], shift_valy * mask.shape[-2]],
scale=1,
shear=0,
)
pose_img = transforms.functional.affine(
pose_img,
angle=0,
translate=[
shift_valx * pose_img.shape[-1],
shift_valy * pose_img.shape[-2],
],
scale=1,
shear=0,
)
mask = 1-mask
cloth_trim = self.clip_processor(images=cloth, return_tensors="pt").pixel_values
mask[mask < 0.5] = 0
mask[mask >= 0.5] = 1
im_mask = image * mask
pose_img = self.norm(pose_img)
result = {}
result["c_name"] = c_name
result["image"] = image
result["cloth"] = cloth_trim
result["cloth_pure"] = self.transform(cloth)
result["inpaint_mask"] = 1-mask
result["im_mask"] = im_mask
result["caption"] = "model is wearing " + cloth_annotation
result["caption_cloth"] = "a photo of " + cloth_annotation
result["annotation"] = cloth_annotation
result["pose_img"] = pose_img
return result
def __len__(self):
return len(self.im_names)
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument("--pretrained_model_name_or_path",type=str,default="diffusers/stable-diffusion-xl-1.0-inpainting-0.1",required=False,help="Path to pretrained model or model identifier from huggingface.co/models.",)
parser.add_argument("--pretrained_garmentnet_path",type=str,default="stabilityai/stable-diffusion-xl-base-1.0",required=False,help="Path to pretrained model or model identifier from huggingface.co/models.",)
parser.add_argument("--checkpointing_epoch",type=int,default=10,help=("Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"" training using `--resume_from_checkpoint`."),)
parser.add_argument("--pretrained_ip_adapter_path",type=str,default="ckpt/ip_adapter/ip-adapter-plus_sdxl_vit-h.bin",help="Path to pretrained ip adapter model. If not specified weights are initialized randomly.",)
parser.add_argument("--image_encoder_path",type=str,default="ckpt/image_encoder",required=False,help="Path to CLIP image encoder",)
parser.add_argument("--gradient_checkpointing",action="store_true",help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",)
parser.add_argument("--width",type=int,default=768,)
parser.add_argument("--height",type=int,default=1024,)
parser.add_argument("--gradient_accumulation_steps",type=int,default=1,help="Number of updates steps to accumulate before performing a backward/update pass.",)
parser.add_argument("--logging_steps",type=int,default=1000,help=("Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"" training using `--resume_from_checkpoint`."),)
parser.add_argument("--output_dir",type=str,default="output",help="The output directory where the model predictions and checkpoints will be written.",)
parser.add_argument("--snr_gamma",type=float,default=None,help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. ""More details here: https://arxiv.org/abs/2303.09556.",)
parser.add_argument("--num_tokens",type=int,default=16,help=("IP adapter token nums"),)
parser.add_argument("--learning_rate",type=float,default=1e-5,help="Learning rate to use.",)
parser.add_argument("--weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--train_batch_size", type=int, default=6, help="Batch size (per device) for the training dataloader.")
parser.add_argument("--test_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader.")
parser.add_argument("--num_train_epochs", type=int, default=130)
parser.add_argument("--max_train_steps",type=int,default=None,help="Total number of training steps to perform. If provided, overrides num_train_epochs.",)
parser.add_argument("--noise_offset", type=float, default=None, help="noise offset")
parser.add_argument("--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes.")
parser.add_argument("--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers.")
parser.add_argument("--mixed_precision",type=str,default=None,choices=["no", "fp16", "bf16"],help=("Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."),)
parser.add_argument("--guidance_scale",type=float,default=2.0,)
parser.add_argument("--seed", type=int, default=42,)
parser.add_argument("--num_inference_steps",type=int,default=30,)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
parser.add_argument("--data_dir", type=str, default="/home/omnious/workspace/yisol/Dataset/VITON-HD/zalando", help="For distributed training: local_rank")
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
return args
def main():
args = parse_args()
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir)
accelerator = Accelerator(
mixed_precision=args.mixed_precision,
gradient_accumulation_steps=args.gradient_accumulation_steps,
project_config=accelerator_project_config,
)
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
# Load scheduler, tokenizer and models.
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler",rescale_betas_zero_snr=True)
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder")
tokenizer_2 = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer_2")
text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder_2")
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path,subfolder="vae",torch_dtype=torch.float16,)
unet_encoder = UNet2DConditionModel_ref.from_pretrained(args.pretrained_garmentnet_path, subfolder="unet")
unet_encoder.config.addition_embed_type = None
unet_encoder.config["addition_embed_type"] = None
image_encoder = CLIPVisionModelWithProjection.from_pretrained(args.image_encoder_path)
#customize unet start
unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet",low_cpu_mem_usage=False, device_map=None)
unet.config.encoder_hid_dim = image_encoder.config.hidden_size
unet.config.encoder_hid_dim_type = "ip_image_proj"
unet.config["encoder_hid_dim"] = image_encoder.config.hidden_size
unet.config["encoder_hid_dim_type"] = "ip_image_proj"
state_dict = torch.load(args.pretrained_ip_adapter_path, map_location="cpu")
adapter_modules = torch.nn.ModuleList(unet.attn_processors.values())
adapter_modules.load_state_dict(state_dict["ip_adapter"],strict=True)
#ip-adapter
image_proj_model = Resampler(
dim=image_encoder.config.hidden_size,
depth=4,
dim_head=64,
heads=20,
num_queries=args.num_tokens,
embedding_dim=image_encoder.config.hidden_size,
output_dim=unet.config.cross_attention_dim,
ff_mult=4,
).to(accelerator.device, dtype=torch.float32)
image_proj_model.load_state_dict(state_dict["image_proj"], strict=True)
image_proj_model.requires_grad_(True)
unet.encoder_hid_proj = image_proj_model
conv_new = torch.nn.Conv2d(
in_channels=4+4+1+4,
out_channels=unet.conv_in.out_channels,
kernel_size=3,
padding=1,
)
torch.nn.init.kaiming_normal_(conv_new.weight)
conv_new.weight.data = conv_new.weight.data * 0.
conv_new.weight.data[:, :9] = unet.conv_in.weight.data
conv_new.bias.data = unet.conv_in.bias.data
unet.conv_in = conv_new # replace conv layer in unet
unet.config['in_channels'] = 13 # update config
unet.config.in_channels = 13 # update config
#customize unet end
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
vae.to(accelerator.device)
text_encoder.to(accelerator.device, dtype=weight_dtype)
text_encoder_2.to(accelerator.device, dtype=weight_dtype)
image_encoder.to(accelerator.device, dtype=weight_dtype)
unet_encoder.to(accelerator.device, dtype=weight_dtype)
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
text_encoder_2.requires_grad_(False)
image_encoder.requires_grad_(False)
unet_encoder.requires_grad_(False)
unet.requires_grad_(True)
if args.enable_xformers_memory_efficient_attention:
if is_xformers_available():
import xformers
unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
if args.gradient_checkpointing:
unet.enable_gradient_checkpointing()
unet_encoder.enable_gradient_checkpointing()
unet.train()
if args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
)
optimizer_class = bnb.optim.AdamW8bit
else:
optimizer_class = torch.optim.AdamW
params_to_opt = itertools.chain(unet.parameters())
optimizer = optimizer_class(
params_to_opt,
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
train_dataset = VitonHDDataset(
dataroot_path=args.data_dir,
phase="train",
order="paired",
size=(args.height, args.width),
)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
pin_memory=True,
shuffle=False,
batch_size=args.train_batch_size,
num_workers=16,
)
test_dataset = VitonHDDataset(
dataroot_path=args.data_dir,
phase="test",
order="paired",
size=(args.height, args.width),
)
test_dataloader = torch.utils.data.DataLoader(
test_dataset,
shuffle=False,
batch_size=args.test_batch_size,
num_workers=4,
)
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
unet,image_proj_model,unet_encoder,image_encoder,optimizer,train_dataloader,test_dataloader = accelerator.prepare(unet, image_proj_model,unet_encoder,image_encoder,optimizer,train_dataloader,test_dataloader)
initial_global_step = 0
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# Train!
progress_bar = tqdm(
range(0, args.max_train_steps),
initial=initial_global_step,
desc="Steps",
# Only show the progress bar once on each machine.
disable=not accelerator.is_local_main_process,
)
global_step = 0
first_epoch = 0
train_loss=0.0
for epoch in range(first_epoch, args.num_train_epochs):
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(unet), accelerator.accumulate(image_proj_model):
if global_step % args.logging_steps == 0:
if accelerator.is_main_process:
with torch.no_grad():
with torch.cuda.amp.autocast():
unwrapped_unet= accelerator.unwrap_model(unet)
newpipe = TryonPipeline.from_pretrained(
args.pretrained_model_name_or_path,
unet=unwrapped_unet,
vae= vae,
scheduler=noise_scheduler,
tokenizer=tokenizer,
tokenizer_2=tokenizer_2,
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
image_encoder=image_encoder,
unet_encoder = unet_encoder,
torch_dtype=torch.float16,
add_watermarker=False,
safety_checker=None,
).to(accelerator.device)
with torch.no_grad():
for sample in test_dataloader:
img_emb_list = []
for i in range(sample['cloth'].shape[0]):
img_emb_list.append(sample['cloth'][i])
prompt = sample["caption"]
num_prompts = sample['cloth'].shape[0]
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
if not isinstance(prompt, List):
prompt = [prompt] * num_prompts
if not isinstance(negative_prompt, List):
negative_prompt = [negative_prompt] * num_prompts
image_embeds = torch.cat(img_emb_list,dim=0)
with torch.inference_mode():
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = newpipe.encode_prompt(
prompt,
num_images_per_prompt=1,
do_classifier_free_guidance=True,
negative_prompt=negative_prompt,
)
prompt = sample["caption_cloth"]
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
if not isinstance(prompt, List):
prompt = [prompt] * num_prompts
if not isinstance(negative_prompt, List):
negative_prompt = [negative_prompt] * num_prompts
with torch.inference_mode():
(
prompt_embeds_c,
_,
_,
_,
) = newpipe.encode_prompt(
prompt,
num_images_per_prompt=1,
do_classifier_free_guidance=False,
negative_prompt=negative_prompt,
)
generator = torch.Generator(newpipe.device).manual_seed(args.seed) if args.seed is not None else None
images = newpipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
num_inference_steps=args.num_inference_steps,
generator=generator,
strength = 1.0,
pose_img = sample['pose_img'],
text_embeds_cloth=prompt_embeds_c,
cloth = sample["cloth_pure"].to(accelerator.device),
mask_image=sample['inpaint_mask'],
image=(sample['image']+1.0)/2.0,
height=args.height,
width=args.width,
guidance_scale=args.guidance_scale,
ip_adapter_image = image_embeds,
)[0]
for i in range(len(images)):
images[i].save(os.path.join(args.output_dir,str(global_step)+"_"+str(i)+"_"+"test.jpg"))
break
del unwrapped_unet
del newpipe
torch.cuda.empty_cache()
pixel_values = batch["image"].to(dtype=vae.dtype)
model_input = vae.encode(pixel_values).latent_dist.sample()
model_input = model_input * vae.config.scaling_factor
masked_latents = vae.encode(
batch["im_mask"].reshape(batch["image"].shape).to(dtype=vae.dtype)
).latent_dist.sample()
masked_latents = masked_latents * vae.config.scaling_factor
masks = batch["inpaint_mask"]
# resize the mask to latents shape as we concatenate the mask to the latents
mask = torch.stack(
[
torch.nn.functional.interpolate(masks, size=(args.height // 8, args.width // 8))
]
)
mask = mask.reshape(-1, 1, args.height // 8, args.width // 8)
pose_map = vae.encode(batch["pose_img"].to(dtype=vae.dtype)).latent_dist.sample()
pose_map = pose_map * vae.config.scaling_factor
# Sample noise that we'll add to the latents
noise = torch.randn_like(model_input)
bsz = model_input.shape[0]
timesteps = torch.randint(
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device
)
# Add noise to the latents according to the noise magnitude at each timestep
noisy_latents = noise_scheduler.add_noise(model_input, noise, timesteps)
latent_model_input = torch.cat([noisy_latents, mask,masked_latents,pose_map], dim=1)
text_input_ids = tokenizer(
batch['caption'],
max_length=tokenizer.model_max_length,
padding="max_length",
truncation=True,
return_tensors="pt"
).input_ids
text_input_ids_2 = tokenizer_2(
batch['caption'],
max_length=tokenizer_2.model_max_length,
padding="max_length",
truncation=True,
return_tensors="pt"
).input_ids
encoder_output = text_encoder(text_input_ids.to(accelerator.device), output_hidden_states=True)
text_embeds = encoder_output.hidden_states[-2]
encoder_output_2 = text_encoder_2(text_input_ids_2.to(accelerator.device), output_hidden_states=True)
pooled_text_embeds = encoder_output_2[0]
text_embeds_2 = encoder_output_2.hidden_states[-2]
encoder_hidden_states = torch.concat([text_embeds, text_embeds_2], dim=-1) # concat
def compute_time_ids(original_size, crops_coords_top_left = (0,0)):
# Adapted from pipeline.StableDiffusionXLPipeline._get_add_time_ids
target_size = (args.height, args.height)
add_time_ids = list(original_size + crops_coords_top_left + target_size)
add_time_ids = torch.tensor([add_time_ids])
add_time_ids = add_time_ids.to(accelerator.device)
return add_time_ids
add_time_ids = torch.cat(
[compute_time_ids((args.height, args.height)) for i in range(bsz)]
)
img_emb_list = []
for i in range(bsz):
img_emb_list.append(batch['cloth'][i])
image_embeds = torch.cat(img_emb_list,dim=0)
image_embeds = image_encoder(image_embeds, output_hidden_states=True).hidden_states[-2]
ip_tokens =image_proj_model(image_embeds)
# add cond
unet_added_cond_kwargs = {"text_embeds": pooled_text_embeds, "time_ids": add_time_ids}
unet_added_cond_kwargs["image_embeds"] = ip_tokens
cloth_values = batch["cloth_pure"].to(accelerator.device,dtype=vae.dtype)
cloth_values = vae.encode(cloth_values).latent_dist.sample()
cloth_values = cloth_values * vae.config.scaling_factor
text_input_ids = tokenizer(
batch['caption_cloth'],
max_length=tokenizer.model_max_length,
padding="max_length",
truncation=True,
return_tensors="pt"
).input_ids
text_input_ids_2 = tokenizer_2(
batch['caption_cloth'],
max_length=tokenizer_2.model_max_length,
padding="max_length",
truncation=True,
return_tensors="pt"
).input_ids
encoder_output = text_encoder(text_input_ids.to(accelerator.device), output_hidden_states=True)
text_embeds_cloth = encoder_output.hidden_states[-2]
encoder_output_2 = text_encoder_2(text_input_ids_2.to(accelerator.device), output_hidden_states=True)
text_embeds_2_cloth = encoder_output_2.hidden_states[-2]
text_embeds_cloth = torch.concat([text_embeds_cloth, text_embeds_2_cloth], dim=-1) # concat
down,reference_features = unet_encoder(cloth_values,timesteps, text_embeds_cloth,return_dict=False)
reference_features = list(reference_features)
noise_pred = unet(latent_model_input, timesteps, encoder_hidden_states,added_cond_kwargs=unet_added_cond_kwargs,garment_features=reference_features).sample
if noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif noise_scheduler.config.prediction_type == "v_prediction":
target = noise_scheduler.get_velocity(model_input, noise, timesteps)
elif noise_scheduler.config.prediction_type == "sample":
# We set the target to latents here, but the model_pred will return the noise sample prediction.
target = model_input
# We will have to subtract the noise residual from the prediction to get the target sample.
model_pred = model_pred - noise
else:
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
if args.snr_gamma is None:
loss = F.mse_loss(noise_pred.float(), target.float(), reduction="mean")
else:
# Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
# Since we predict the noise instead of x_0, the original formulation is slightly changed.
# This is discussed in Section 4.2 of the same paper.
snr = compute_snr(noise_scheduler, timesteps)
if noise_scheduler.config.prediction_type == "v_prediction":
# Velocity objective requires that we add one to SNR values before we divide by them.
snr = snr + 1
mse_loss_weights = (
torch.stack([snr, args.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr
)
loss = F.mse_loss(noise_pred.float(), target.float(), reduction="none")
loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights
loss = loss.mean()
avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean()
train_loss += avg_loss.item() / args.gradient_accumulation_steps
# Backpropagate
accelerator.backward(loss)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(params_to_opt, 1.0)
optimizer.step()
optimizer.zero_grad()
# Load scheduler, tokenizer and models.
progress_bar.update(1)
global_step += 1
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
accelerator.log({"train_loss": train_loss}, step=global_step)
train_loss = 0.0
logs = {"step_loss": loss.detach().item()}
progress_bar.set_postfix(**logs)
if global_step >= args.max_train_steps:
break
if global_step % args.checkpointing_epoch == 0:
if accelerator.is_main_process:
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
unwrapped_unet = accelerator.unwrap_model(
unet, keep_fp32_wrapper=True
)
pipeline = TryonPipeline.from_pretrained(
args.pretrained_model_name_or_path,
unet=unwrapped_unet,
vae= vae,
scheduler=noise_scheduler,
tokenizer=tokenizer,
tokenizer_2=tokenizer_2,
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
image_encoder=image_encoder,
unet_encoder=unet_encoder,
torch_dtype=torch.float16,
add_watermarker=False,
safety_checker=None,
)
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
pipeline.save_pretrained(save_path)
del pipeline
if __name__ == "__main__":
main()