-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcrt.gdshader
276 lines (226 loc) · 8.18 KB
/
crt.gdshader
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
//SHADER ORIGINALY CREADED BY "TimothyLottes" FROM SHADERTOY
//PORTED AND MODIFYED TO GODOT BY AHOPNESS (@ahopness)
//LICENSE : CC0
//COMATIBLE WITH : GLES2, GLES3, WEBGL
//SHADERTOY LINK : https://www.shadertoy.com/view/MsjXzh
// PUBLIC DOMAIN CRT STYLED SCAN-LINE SHADER
//
// by Timothy Lottes
//
// This is more along the style of a really good CGA arcade monitor.
// With RGB inputs instead of NTSC.
// The shadow mask example has the mask rotated 90 degrees for less chromatic aberration.
//
// Left it unoptimized to show the theory behind the algorithm.
//
// It is an example what I personally would want as a display option for pixel art games.
// Please take and use, change, or whatever.
shader_type canvas_item;
uniform sampler2D SCREEN_TEXTURE : hint_screen_texture, filter_linear_mipmap;
// Emulated input resolution.
uniform vec2 res;
// Mask type
// 0 = Very compressed TV style shadow mask
// 1 = Stretched VGA style shadow mask (same as prior shaders)
// 2 = VGA style shadow mask
uniform int mask_type :hint_range(0, 2) = 0;
// Bloom Type
// 0 = Normalized exposure
// 1 = Aditive bloom
// 2 = No Bloom
uniform int bloom_type :hint_range(0, 2) = 0;
// Hardness of scanline.
// -8.0 = soft
// -16.0 = medium
uniform float hardScan :hint_range(-12.0, -1.0) = -8.0;
// Hardness of pixels in scanline.
// -2.0 = soft
// -4.0 = hard
uniform float hardPix :hint_range(-4.0, 0.0) = -2.0;
// Hardness of short vertical bloom.
// -1.0 = wide to the point of clipping (bad)
// -1.5 = wide
// -4.0 = not very wide at all
uniform float hardBloomScan :hint_range(-4.0, 0.0) = -2.0;
// Hardness of short horizontal bloom.
// -0.5 = wide to the point of clipping (bad)
// -1.0 = wide
// -2.0 = not very wide at all
uniform float hardBloomPix :hint_range(-2.0, 0.0) = -1.5;
// Amount of small bloom effect.
// 1.0/1.0 = only bloom
// 1.0/16.0 = what I think is a good amount of small bloom
// 0.0 = no bloom
uniform float bloomAmount :hint_range(1.0, 16.0) = 16.0;
// Display warp.
// 0.0 = none
// 1.0/8.0 = extreme
uniform vec2 warp = vec2(64.0, 24.0);
// Amount of shadow mask.
uniform float maskDark :hint_range(0.0, 1.0) = 0.5;
uniform float maskLight :hint_range(1.0, 2.0) = 1.5;
//------------------------------------------------------------------------
// sRGB to Linear.
// Assuing using sRGB typed textures this should not be needed.
float ToLinear1(float c){ return(c <= 0.04045) ? c / 12.92 : pow((c + 0.055) / 1.055, 2.4); }
vec3 ToLinear(vec3 c){ return vec3(ToLinear1(c.r), ToLinear1(c.g), ToLinear1(c.b)); }
// Linear to sRGB.
// Assuing using sRGB typed textures this should not be needed.
float ToSrgb1(float c){ return(c < 0.0031308?c * 12.92 : 1.055 * pow(c, 0.41666) - 0.055); }
vec3 ToSrgb(vec3 c){ return vec3(ToSrgb1(c.r), ToSrgb1(c.g), ToSrgb1(c.b)); }
// Nearest emulated sample given floating point position and texel offset.
// Also zero's off screen.
vec3 Fetch(vec2 pos, vec2 off, sampler2D iChannel0){
pos = floor(pos * res + off) / res;
if(max(abs(pos.x - 0.5), abs(pos.y - 0.5)) > 0.5){
return vec3(0.0, 0.0, 0.0);
}
return ToLinear(texture(iChannel0 , pos.xy , -16.0).rgb);
}
// Distance in emulated pixels to nearest texel.
vec2 Dist(vec2 pos){
pos = pos * res;
return - ((pos - floor(pos)) - vec2(0.5));
}
// 1D Gaussian.
float Gaus(float pos, float scale){ return exp2(scale * pos * pos); }
// 3-tap Gaussian filter along horz line.
vec3 Horz3(vec2 pos, float off, sampler2D iChannel0){
vec3 b = Fetch(pos, vec2(-1.0, off), iChannel0);
vec3 c = Fetch(pos, vec2( 0.0, off), iChannel0);
vec3 d = Fetch(pos, vec2( 1.0, off), iChannel0);
float dst = Dist(pos).x;
// Convert distance to weight.
float scale = hardPix;
float wb = Gaus(dst - 1.0, scale);
float wc = Gaus(dst + 0.0, scale);
float wd = Gaus(dst + 1.0, scale);
// Return filtered sample.
return (b * wb + c * wc + d * wd) / (wb + wc + wd);
}
// 5-tap Gaussian filter along horz line.
vec3 Horz5(vec2 pos, float off, sampler2D iChannel0){
vec3 a = Fetch(pos, vec2(-2.0, off), iChannel0);
vec3 b = Fetch(pos, vec2(-1.0, off), iChannel0);
vec3 c = Fetch(pos, vec2( 0.0, off), iChannel0);
vec3 d = Fetch(pos, vec2( 1.0, off), iChannel0);
vec3 e = Fetch(pos, vec2( 2.0, off), iChannel0);
float dst = Dist(pos).x;
// Convert distance to weight.
float scale = hardPix;
float wa = Gaus(dst - 2.0, scale);
float wb = Gaus(dst - 1.0, scale);
float wc = Gaus(dst + 0.0, scale);
float wd = Gaus(dst + 1.0, scale);
float we = Gaus(dst + 2.0, scale);
// Return filtered sample.
return (a * wa + b * wb + c * wc + d * wd + e * we) / (wa + wb + wc + wd + we);
}
// 7-tap Gaussian filter along horz line.
vec3 Horz7(vec2 pos, float off, sampler2D iChannel0){
vec3 a = Fetch(pos, vec2(-3.0, off), iChannel0);
vec3 b = Fetch(pos, vec2(-2.0, off), iChannel0);
vec3 c = Fetch(pos, vec2( 1.0, off), iChannel0);
vec3 d = Fetch(pos, vec2( 0.0, off), iChannel0);
vec3 e = Fetch(pos, vec2( 1.0, off), iChannel0);
vec3 f = Fetch(pos, vec2( 2.0, off), iChannel0);
vec3 g = Fetch(pos, vec2( 3.0, off), iChannel0);
float dst = Dist(pos).x;
// Convert distance to weight.
float scale = hardBloomPix;
float wa = Gaus(dst - 3.0, scale);
float wb = Gaus(dst - 2.0, scale);
float wc = Gaus(dst - 1.0, scale);
float wd = Gaus(dst + 0.0, scale);
float we = Gaus(dst + 1.0, scale);
float wf = Gaus(dst + 2.0, scale);
float wg = Gaus(dst + 3.0, scale);
// Return filtered sample.
return (a * wa + b * wb + c * wc + d * wd + e * we + f * wf + g * wg) / (wa + wb + wc + wd + we + wf + wg);
}
// Return scanline weight.
float Scan(vec2 pos, float off){
float dst = Dist(pos).y;
return Gaus(dst + off, hardScan);
}
// Return scanline weight for bloom.
float BloomScan(vec2 pos, float off){
float dst = Dist(pos).y;
return Gaus(dst + off, hardBloomScan);
}
// Allow nearest three lines to effect pixel.
vec3 Tri(vec2 pos, sampler2D iChannel0){
vec3 a = Horz3(pos,-1.0, iChannel0);
vec3 b = Horz5(pos, 0.0, iChannel0);
vec3 c = Horz3(pos, 1.0, iChannel0);
float wa = Scan(pos,-1.0);
float wb = Scan(pos, 0.0);
float wc = Scan(pos, 1.0);
return a * wa + b * wb + c * wc;
}
// Small bloom.
vec3 Bloom(vec2 pos, sampler2D iChannel0){
vec3 a = Horz5(pos,-2.0, iChannel0);
vec3 b = Horz7(pos,-1.0, iChannel0);
vec3 c = Horz7(pos, 0.0, iChannel0);
vec3 d = Horz7(pos, 1.0, iChannel0);
vec3 e = Horz5(pos, 2.0, iChannel0);
float wa = BloomScan(pos,-2.0);
float wb = BloomScan(pos,-1.0);
float wc = BloomScan(pos, 0.0);
float wd = BloomScan(pos, 1.0);
float we = BloomScan(pos, 2.0);
return a * wa + b * wb + c * wc + d * wd + e * we;
}
// Distortion of scanlines, and end of screen alpha.
vec2 Warp(vec2 pos){
pos = pos * 2.0 - 1.0;
pos *= vec2(1.0 + (pos.y * pos.y) * 1.0 / warp.x, 1.0 + (pos.x * pos.x) * 1.0/ warp.y);
return pos * 0.5+0.5;
}
vec3 Mask(vec2 pos){
if (mask_type == 0){
float line = maskLight;
float odd = 0.0;
if(fract(pos.x / 6.0) < 0.5) odd = 1.0;
if(fract((pos.y + odd) / 2.0) < 0.5) line = maskDark;
pos.x = fract(pos.x / 3.0);
vec3 mask = vec3(maskDark, maskDark, maskDark);
if(pos.x < 0.333)mask.r = maskLight;
else if(pos.x < 0.666)mask.g = maskLight;
else mask.b = maskLight;
mask *= line;
return mask;
}else if (mask_type == 1){
pos.x += pos.y * 3.0;
vec3 mask = vec3(maskDark, maskDark, maskDark);
pos.x = fract(pos.x / 6.0);
if(pos.x < 0.333)mask.r = maskLight;
else if(pos.x < 0.666)mask.g = maskLight;
else mask.b = maskLight;
return mask;
}else if (mask_type == 2){
pos.xy = floor(pos.xy * vec2(1.0, 0.5));
pos.x += pos.y * 3.0;
vec3 mask = vec3(maskDark, maskDark, maskDark);
pos.x = fract(pos.x / 6.0);
if(pos.x < 0.333)mask.r = maskLight;
else if(pos.x < 0.666)mask.g = maskLight;
else mask.b = maskLight;
return mask;
}
}
// Draw dividing bars.
float Bar(float pos, float bar){ pos -= bar; return pos * pos < 4.0 ? 0.0 : 1.0; }
// Entry.
void fragment(){
vec2 pos = Warp(FRAGCOORD.xy / (1.0 / SCREEN_PIXEL_SIZE).xy);
COLOR.rgb = Tri(pos, SCREEN_TEXTURE) * Mask(FRAGCOORD.xy);
if (bloom_type == 0){
COLOR.rgb = mix(COLOR.rgb,Bloom(pos, SCREEN_TEXTURE), 1.0 / bloomAmount);
}else if (bloom_type == 1){
COLOR.rgb += Bloom(pos, SCREEN_TEXTURE) * 1.0 / bloomAmount;
}
COLOR.a = 1.0;
COLOR.rgb = ToSrgb(COLOR.rgb);
}