forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbinary_search_test.cc
421 lines (387 loc) · 15.1 KB
/
binary_search_test.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/algorithms/binary_search.h"
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <functional>
#include <limits>
#include <utility>
#include "absl/base/log_severity.h"
#include "absl/numeric/int128.h"
#include "absl/random/distributions.h"
#include "absl/random/random.h"
#include "absl/strings/str_format.h"
#include "absl/time/time.h"
#include "benchmark/benchmark.h"
#include "gtest/gtest.h"
#include "ortools/base/gmock.h"
#include "ortools/base/hash.h"
namespace operations_research {
// Correctly picking the midpoint of two integers in all cases isn't trivial!
template <>
int BinarySearchMidpoint(int x, int y) {
if (x > y) std::swap(x, y);
if (x >= 0 || y < 0) return x + (y - x) / 2;
return (x + y) / 2;
}
namespace {
TEST(BinarySearchTest, DoubleExample) {
// M_PI is problematic on windows.
// std::numbers::pi is C++20 (incompatible with OR-Tools).
const double kPi = 3.14159265358979323846;
const double x =
BinarySearch<double>(/*x_true=*/0.0, /*x_false=*/kPi / 2,
[](double x) { return cos(x) >= 2 * sin(x); });
EXPECT_GE(x, 0);
EXPECT_LE(x, kPi / 2);
EXPECT_EQ(cos(x), 2 * sin(x)) << x;
}
template <typename T>
class BinarySearchIntTest : public ::testing::Test {};
TYPED_TEST_SUITE_P(BinarySearchIntTest);
TYPED_TEST_P(BinarySearchIntTest, IntExampleWithReversedIntervalOrder) {
EXPECT_EQ(
BinarySearch<TypeParam>(/*x_true=*/67, /*x_false=*/23,
[](TypeParam x) { return x > TypeParam{42}; }),
43);
}
TYPED_TEST_P(BinarySearchIntTest, IntOverflowStressTest) {
const TypeParam kBounds[] = {std::numeric_limits<TypeParam>::min(),
std::numeric_limits<TypeParam>::min() + 1,
std::numeric_limits<TypeParam>::min() + 2,
std::numeric_limits<TypeParam>::min() + 3,
0,
1,
2,
3,
std::numeric_limits<TypeParam>::max() - 3,
std::numeric_limits<TypeParam>::max() - 2,
std::numeric_limits<TypeParam>::max() - 1,
std::numeric_limits<TypeParam>::max()};
for (TypeParam x : kBounds) {
for (TypeParam y : kBounds) {
if (x == y) continue;
ASSERT_EQ(BinarySearch<TypeParam>(/*x_true=*/x, /*x_false=*/y,
[x](TypeParam t) { return t == x; }),
x)
<< "x=" << x << ", y=" << y;
}
}
}
REGISTER_TYPED_TEST_SUITE_P(BinarySearchIntTest,
IntExampleWithReversedIntervalOrder,
IntOverflowStressTest);
using MyTypes = ::testing::Types<int, unsigned, int64_t, uint64_t, absl::int128,
absl::uint128>;
INSTANTIATE_TYPED_TEST_SUITE_P(My, BinarySearchIntTest, MyTypes);
TEST(BinarySearchTest, LargeInt128SearchDomain) {
absl::int128 target = -1234567890123456789;
target <<= 50; // Make sure it does need more than 64 or even 96 bits.
EXPECT_EQ(BinarySearch<absl::int128>(
/*x_true=*/std::numeric_limits<absl::int128>::min(),
/*x_false=*/std::numeric_limits<absl::int128>::max(),
[target](absl::int128 x) { return x < target; }),
target - 1);
}
TEST(BinarySearchTest, VeryLongDoubleSearchDomain) {
// Binary search for the smallest possible long double that is > 0,
// starting with interval [0, numeric_limit::max()]. This is probably close to
// the longest possible binary search on a widely-available numerical type.
EXPECT_EQ(BinarySearch<long double>(
/*x_true=*/std::numeric_limits<long double>::max(),
/*x_false=*/0.0, [](long double x) { return x > 0; }),
std::numeric_limits<long double>::denorm_min());
}
TEST(BinarySearchTest, InfinityCornerCases) {
constexpr double kInfinity = std::numeric_limits<double>::infinity();
EXPECT_THAT(BinarySearch<double>(
/*x_true=*/-kInfinity,
/*x_false=*/kInfinity, [](double x) { return x < 0; }),
-kInfinity);
EXPECT_EQ(BinarySearch<double>(
/*x_true=*/-1,
/*x_false=*/kInfinity, [](double x) { return x < 0; }),
-1);
EXPECT_THAT(BinarySearch<double>(
/*x_true=*/kInfinity,
/*x_false=*/0, [](double x) { return x > 0; }),
kInfinity);
}
TEST(BinarySearchTest, NanCornerCases) {
EXPECT_THAT(BinarySearch<double>(
/*x_true=*/std::numeric_limits<double>::quiet_NaN(),
/*x_false=*/0, [](double x) { return !(x == 0); }),
testing::IsNan());
EXPECT_EQ(BinarySearch<double>(
/*x_true=*/0,
/*x_false=*/std::numeric_limits<double>::quiet_NaN(),
[](double x) { return x == 0; }),
0);
}
TEST(BinarySearchTest, WithAbslDuration) {
EXPECT_THAT(BinarySearch<absl::Duration>(
/*x_true=*/absl::Hours(100000),
/*x_false=*/absl::ZeroDuration(),
[](absl::Duration x) { return x > absl::ZeroDuration(); }),
// Smallest non-zero absl::Duration.
absl::Nanoseconds(0.25));
EXPECT_EQ(BinarySearch<absl::Duration>(
/*x_true=*/absl::InfiniteDuration(),
/*x_false=*/-absl::Seconds(100),
[](absl::Duration t) { return t > absl::Seconds(1); }),
absl::InfiniteDuration());
}
TEST(BinarySearchDeathTest, DiesIfEitherBoundaryConditionViolatedInFastbuild) {
if (!DEBUG_MODE) GTEST_SKIP();
EXPECT_DEATH(BinarySearch<int>(/*x_true=*/0, /*x_false=*/42,
[](int x) { return x < 999; }),
"");
EXPECT_DEATH(BinarySearch<int>(/*x_true=*/0, /*x_false=*/42,
[](int x) { return x < 0; }),
"");
EXPECT_DEATH(BinarySearch<int>(/*x_true=*/0, /*x_false=*/42,
[](int x) { return x > 20; }),
"");
}
} // namespace
// Examples of cases where one needs to override BinarySearchMidpoint() to get
// correct results.
// Note that template specializations must be exactly in the same namespace,
// hence the presence of these tests outside the unnamed namespace.
template <>
absl::Time BinarySearchMidpoint(absl::Time x, absl::Time y) {
return x + (y - x) / 2;
}
TEST(BinarySearchTest, WithAbslTime) {
const absl::Time t0 = absl::Now();
EXPECT_EQ(BinarySearch<absl::Time>(
/*x_true=*/t0 + absl::Hours(1),
/*x_false=*/t0, [t0](absl::Time x) { return x > t0; }),
t0 + absl::Nanoseconds(0.25));
EXPECT_EQ(BinarySearch<absl::Time>(
/*x_true=*/absl::InfinitePast(),
/*x_false=*/absl::Now() + absl::Seconds(100),
[](absl::Time x) { return x < absl::Now(); }),
absl::InfinitePast());
}
TEST(BinarySearchTest, NonMonoticPredicateReachesLocalInflexionPoint_Double) {
absl::BitGen random;
auto generate_random_double = [&random]() {
// We generate the sign, mantissa and exponent separately.
return (absl::Bernoulli(random, 0.5) ? 1 : -1) *
scalbn(absl::Uniform<double>(random, 1, 2),
absl::Uniform<int>(random, -1023, 1023));
};
constexpr double kEps = std::numeric_limits<double>::epsilon();
const int kNumAttempts = 100000;
for (int attempt = 0; attempt < kNumAttempts; ++attempt) {
const uint64_t hash_seed = random();
std::function<bool(double)> non_monotonic_predicate =
[hash_seed](double x) {
return fasthash64(reinterpret_cast<const char*>(&x), sizeof(x),
hash_seed) &
1;
};
// Pick a random [x_true, x_false] interval which verifies f(x_true) = true
// and f(x_false) = false.
double x_true, x_false;
do {
x_true = generate_random_double();
} while (!non_monotonic_predicate(x_true));
// x_false will either be set to a another random double, or to a small
// perturbation from x_true.
if (absl::Bernoulli(random, 0.5)) {
// random double.
do {
x_false = generate_random_double();
} while (non_monotonic_predicate(x_false));
} else {
// small perturbation from x_true.
do {
const double eps = absl::LogUniform(random, 1, 1000) * kEps;
x_false = x_true * (1 + (absl::Bernoulli(random, 0.5) ? eps : -eps));
} while (non_monotonic_predicate(x_false));
}
ASSERT_NE(x_true, x_false);
// Verify that our predicate is deterministic.
for (int i = 0; i < 20; ++i) {
ASSERT_TRUE(non_monotonic_predicate(x_true));
}
for (int i = 0; i < 20; ++i) {
ASSERT_FALSE(non_monotonic_predicate(x_false));
}
// Perform the binary search.
const double solution =
BinarySearch(x_true, x_false, non_monotonic_predicate);
SCOPED_TRACE(absl::StrFormat("x_true=%.16g, x_false=%.16g, solution=%.16g",
x_true, x_false, solution));
// Verify that the solution is in [x_true, x_false[.
if (x_true < x_false) {
ASSERT_GE(solution, x_true);
ASSERT_LT(solution, x_false);
} else {
ASSERT_LE(solution, x_true);
ASSERT_GT(solution, x_false);
}
// Verify that f(solution')=false, where solution' is the smallest double
// "after" solution (in the x_true->x_false direction).
ASSERT_FALSE(non_monotonic_predicate(std::nextafter(solution, x_false)));
}
}
TEST(BinarySearchTest, NonDeterministicPredicateStillConverges) {
if (DEBUG_MODE) {
GTEST_SKIP() << "DCHECKs catch f(x_true)=false or f(x_false)=true.";
}
absl::BitGen random;
std::function<bool(int)> random_predicate = [&random](int) {
return absl::Bernoulli(random, 0.5);
};
const int kNumAttempts = 100000;
for (int attempt = 0; attempt < kNumAttempts; ++attempt) {
const int x_true = random();
const int x_false = absl::Bernoulli(random, 0.5)
? x_true + (absl::Bernoulli(random, 0.5) ? 1 : -1) *
absl::LogUniform(random, 0, 1000)
: random();
const int solution = BinarySearch(x_true, x_false, random_predicate);
SCOPED_TRACE(absl::StrFormat("x_true=%d, x_false=%d, solution=%d", x_true,
x_false, solution));
if (x_false == x_true) {
ASSERT_EQ(solution, x_true);
} else if (x_true < x_false) {
ASSERT_GE(solution, x_true);
ASSERT_LT(solution, x_false);
} else {
ASSERT_LE(solution, x_true);
ASSERT_GT(solution, x_false);
}
}
}
template <typename T>
void BM_BinarySearch(benchmark::State& state) {
auto functor = [](T x) { return x > std::numeric_limits<T>::max() / 2; };
for (const auto s : state) {
benchmark::DoNotOptimize(functor);
auto result = BinarySearch<T>(std::numeric_limits<T>::max(),
std::numeric_limits<T>::min(), functor);
benchmark::DoNotOptimize(result);
}
}
BENCHMARK(BM_BinarySearch<float>);
BENCHMARK(BM_BinarySearch<double>);
BENCHMARK(BM_BinarySearch<int>);
BENCHMARK(BM_BinarySearch<unsigned>);
BENCHMARK(BM_BinarySearch<int64_t>);
BENCHMARK(BM_BinarySearch<uint64_t>);
BENCHMARK(BM_BinarySearch<absl::int128>);
TEST(ConvexMinimumTest, ExhaustiveTest) {
const int n = 99;
std::vector<int> points(n);
std::vector<int> values(n);
for (int i = 0; i < n; ++i) points[i] = i;
int total_num_queries = 0;
int max_num_queries = 0;
for (int b1 = 0; b1 < n; ++b1) {
for (int i = b1; i >= 0; --i) values[i] = b1 - i;
for (int b2 = b1; b2 < n; ++b2) {
for (int i = b2; i < n; ++i) values[i] = i - b2;
int num_queries = 0;
const auto [point, value] = ConvexMinimum<int, int>(points, [&](int p) {
++num_queries;
return values[p];
});
total_num_queries += num_queries;
max_num_queries = std::max(max_num_queries, num_queries);
EXPECT_EQ(value, 0);
EXPECT_GE(point, b1);
EXPECT_LE(point, b2);
// Fail after one example.
ASSERT_TRUE(value == 0 && b1 <= point && point <= b2)
<< "queries: " << num_queries << " opt range: [" << b1 << ", " << b2
<< "]";
}
}
// TODO(user): we can probably do better.
EXPECT_EQ(total_num_queries, 19376);
EXPECT_EQ(max_num_queries, 12);
}
TEST(ConvexMinimumTest, OneQueryIfSizeOne) {
std::vector<int> points{0};
std::vector<double> values{0.0};
int num_queries = 0;
const auto [point, value] = ConvexMinimum<int, int>(points, [&](int p) {
++num_queries;
return values[p];
});
EXPECT_EQ(point, 0);
EXPECT_EQ(value, 0.0);
EXPECT_EQ(num_queries, 1);
}
TEST(ConvexMinimumTest, TwoQueriesIfSizeTwo) {
std::vector<int> points{0, 1};
std::vector<double> values{0.0, 1.0};
int num_queries = 0;
const auto [point, value] = ConvexMinimum<int, int>(points, [&](int p) {
++num_queries;
return values[p];
});
EXPECT_EQ(point, 0);
EXPECT_EQ(value, 0.0);
EXPECT_EQ(num_queries, 2);
}
TEST(ConvexMinimumTest, TwoQueriesIfSizeTwoReversed) {
std::vector<int> points{0, 1};
std::vector<double> values{1.0, 0.0};
int num_queries = 0;
const auto [point, value] = ConvexMinimum<int, int>(points, [&](int p) {
++num_queries;
return values[p];
});
EXPECT_EQ(point, 1);
EXPECT_EQ(value, 0.0);
EXPECT_EQ(num_queries, 2);
}
TEST(RangeConvexMinimumTest, HugeRangeTest) {
int total_num_queries = 0;
int max_num_queries = 0;
for (int b1 = -100; b1 < 100; ++b1) {
for (int b2 = b1; b2 < b1 + 100; ++b2) {
int num_queries = 0;
const auto [point, value] = RangeConvexMinimum<int64_t, double>(
std::numeric_limits<int64_t>::min() / 2,
std::numeric_limits<int64_t>::max() / 2, [&](int64_t v) -> double {
++num_queries;
if (v < b1) {
return b1 - v;
} else if (v > b2) {
return v - b2;
}
return 0;
});
total_num_queries += num_queries;
max_num_queries = std::max(max_num_queries, num_queries);
EXPECT_EQ(value, 0);
EXPECT_GE(point, b1);
EXPECT_LE(point, b2);
// Don't continue past the first failing example to limit the number of
// errors.
ASSERT_TRUE(value == 0 && b1 <= point && point <= b2)
<< "queries: " << num_queries << " opt range: [" << b1 << ", " << b2
<< "]";
}
}
// 80 is the worst case we would expect from ternary search: 2*log_3(2^63).
EXPECT_LE(max_num_queries, 80);
}
} // namespace operations_research