forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclause.h
952 lines (812 loc) · 40.2 KB
/
clause.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// This file contains the solver internal representation of the clauses and the
// classes used for their propagation.
#ifndef OR_TOOLS_SAT_CLAUSE_H_
#define OR_TOOLS_SAT_CLAUSE_H_
#include <cstdint>
#include <deque>
#include <functional>
#include <string>
#include <utility>
#include <vector>
#include "absl/base/attributes.h"
#include "absl/container/flat_hash_map.h"
#include "absl/container/flat_hash_set.h"
#include "absl/container/inlined_vector.h"
#include "absl/log/check.h"
#include "absl/random/bit_gen_ref.h"
#include "absl/types/span.h"
#include "ortools/base/strong_vector.h"
#include "ortools/sat/drat_proof_handler.h"
#include "ortools/sat/model.h"
#include "ortools/sat/sat_base.h"
#include "ortools/sat/sat_parameters.pb.h"
#include "ortools/sat/util.h"
#include "ortools/util/bitset.h"
#include "ortools/util/stats.h"
#include "ortools/util/strong_integers.h"
#include "ortools/util/time_limit.h"
namespace operations_research {
namespace sat {
// This is how the SatSolver stores a clause. A clause is just a disjunction of
// literals. In many places, we just use vector<literal> to encode one. But in
// the critical propagation code, we use this class to remove one memory
// indirection.
class SatClause {
public:
// Creates a sat clause. There must be at least 2 literals.
// Clause with one literal fix variable directly and are never constructed.
// Note that in practice, we use BinaryImplicationGraph for the clause of size
// 2, so this is used for size at least 3.
static SatClause* Create(absl::Span<const Literal> literals);
// Non-sized delete because this is a tail-padded class.
void operator delete(void* p) {
::operator delete(p); // non-sized delete
}
// Number of literals in the clause.
int size() const { return size_; }
// We re-use the size to lazily remove clause and notify that they need to be
// deleted. It is why this is not called empty() to emphasis that fact. Note
// that we never create an initially empty clause, so there is no confusion
// with an infeasible model with an empty clause inside.
int IsRemoved() const { return size_ == 0; }
// Allows for range based iteration: for (Literal literal : clause) {}.
const Literal* begin() const { return &(literals_[0]); }
const Literal* end() const { return &(literals_[size_]); }
// Returns the first and second literals. These are always the watched
// literals if the clause is attached in the LiteralWatchers.
Literal FirstLiteral() const { return literals_[0]; }
Literal SecondLiteral() const { return literals_[1]; }
// Returns the literal that was propagated to true. This only works for a
// clause that just propagated this literal. Otherwise, this will just returns
// a literal of the clause.
Literal PropagatedLiteral() const { return literals_[0]; }
// Returns the reason for the last unit propagation of this clause. The
// preconditions are the same as for PropagatedLiteral(). Note that we don't
// need to include the propagated literal.
absl::Span<const Literal> PropagationReason() const {
return absl::Span<const Literal>(&(literals_[1]), size_ - 1);
}
// Returns a Span<> representation of the clause.
absl::Span<const Literal> AsSpan() const {
return absl::Span<const Literal>(&(literals_[0]), size_);
}
// Removes literals that are fixed. This should only be called at level 0
// where a literal is fixed iff it is assigned. Aborts and returns true if
// they are not all false.
//
// Note that the removed literal can still be accessed in the portion [size,
// old_size) of literals().
bool RemoveFixedLiteralsAndTestIfTrue(const VariablesAssignment& assignment);
// Returns true if the clause is satisfied for the given assignment. Note that
// the assignment may be partial, so false does not mean that the clause can't
// be satisfied by completing the assignment.
bool IsSatisfied(const VariablesAssignment& assignment) const;
std::string DebugString() const;
private:
// The manager needs to permute the order of literals in the clause and
// call Clear()/Rewrite.
friend class ClauseManager;
Literal* literals() { return &(literals_[0]); }
// Marks the clause so that the next call to CleanUpWatchers() can identify it
// and actually remove it. We use size_ = 0 for this since the clause will
// never be used afterwards.
void Clear() { size_ = 0; }
// Rewrites a clause with another shorter one. Note that the clause shouldn't
// be attached when this is called.
void Rewrite(absl::Span<const Literal> new_clause) {
size_ = 0;
for (const Literal l : new_clause) literals_[size_++] = l;
}
int32_t size_;
// This class store the literals inline, and literals_ mark the starts of the
// variable length portion.
Literal literals_[0];
};
// Clause information used for the clause database management. Note that only
// the clauses that can be removed have an info. The problem clauses and
// the learned one that we wants to keep forever do not have one.
struct ClauseInfo {
double activity = 0.0;
int32_t lbd = 0;
bool protected_during_next_cleanup = false;
};
class BinaryImplicationGraph;
// Stores the 2-watched literals data structure. See
// http://www.cs.berkeley.edu/~necula/autded/lecture24-sat.pdf for
// detail.
//
// This class is also responsible for owning the clause memory and all related
// information.
class ClauseManager : public SatPropagator {
public:
explicit ClauseManager(Model* model);
// This type is neither copyable nor movable.
ClauseManager(const ClauseManager&) = delete;
ClauseManager& operator=(const ClauseManager&) = delete;
~ClauseManager() override;
// Must be called before adding clauses referring to such variables.
void Resize(int num_variables);
// SatPropagator API.
bool Propagate(Trail* trail) final;
absl::Span<const Literal> Reason(const Trail& trail,
int trail_index) const final;
// Returns the reason of the variable at given trail_index. This only works
// for variable propagated by this class and is almost the same as Reason()
// with a different return format.
SatClause* ReasonClause(int trail_index) const;
// Adds a new clause and perform initial propagation for this clause only.
bool AddClause(absl::Span<const Literal> literals, Trail* trail);
bool AddClause(absl::Span<const Literal> literals);
// Same as AddClause() for a removable clause. This is only called on learned
// conflict, so this should never have all its literal at false (CHECKED).
SatClause* AddRemovableClause(const std::vector<Literal>& literals,
Trail* trail);
// Lazily detach the given clause. The deletion will actually occur when
// CleanUpWatchers() is called. The later needs to be called before any other
// function in this class can be called. This is DCHECKed.
//
// Note that we remove the clause from clauses_info_ right away.
void LazyDetach(SatClause* clause);
void CleanUpWatchers();
// Detaches the given clause right away.
//
// TODO(user): It might be better to have a "slower" mode in
// PropagateOnFalse() that deal with detached clauses in the watcher list and
// is activated until the next CleanUpWatchers() calls.
void Detach(SatClause* clause);
// Attaches the given clause. The first two literal of the clause must
// be unassigned and the clause must not be already attached.
void Attach(SatClause* clause, Trail* trail);
// Reclaims the memory of the lazily removed clauses (their size was set to
// zero) and remove them from AllClausesInCreationOrder() this work in
// O(num_clauses()).
void DeleteRemovedClauses();
int64_t num_clauses() const { return clauses_.size(); }
const std::vector<SatClause*>& AllClausesInCreationOrder() const {
return clauses_;
}
// True if removing this clause will not change the set of feasible solution.
// This is the case for clauses that were learned during search. Note however
// that some learned clause are kept forever (heuristics) and do not appear
// here.
bool IsRemovable(SatClause* const clause) const {
return clauses_info_.contains(clause);
}
int64_t num_removable_clauses() const { return clauses_info_.size(); }
absl::flat_hash_map<SatClause*, ClauseInfo>* mutable_clauses_info() {
return &clauses_info_;
}
// Total number of clauses inspected during calls to PropagateOnFalse().
int64_t num_inspected_clauses() const { return num_inspected_clauses_; }
int64_t num_inspected_clause_literals() const {
return num_inspected_clause_literals_;
}
// The number of different literals (always twice the number of variables).
int64_t literal_size() const { return needs_cleaning_.size().value(); }
// Number of clauses currently watched.
int64_t num_watched_clauses() const { return num_watched_clauses_; }
void SetDratProofHandler(DratProofHandler* drat_proof_handler) {
drat_proof_handler_ = drat_proof_handler;
}
// Round-robbing selection of the next clause to minimize/probe.
// Note that for minimization we only look at clause kept forever.
//
// TODO(user): If more indices are needed, switch to a generic API.
SatClause* NextClauseToMinimize() {
for (; to_minimize_index_ < clauses_.size(); ++to_minimize_index_) {
if (clauses_[to_minimize_index_]->IsRemoved()) continue;
if (!IsRemovable(clauses_[to_minimize_index_])) {
return clauses_[to_minimize_index_++];
}
}
return nullptr;
}
SatClause* NextClauseToProbe() {
for (; to_probe_index_ < clauses_.size(); ++to_probe_index_) {
if (clauses_[to_probe_index_]->IsRemoved()) continue;
return clauses_[to_probe_index_++];
}
return nullptr;
}
// Restart the scans.
void ResetToProbeIndex() { to_probe_index_ = 0; }
void ResetToMinimizeIndex() { to_minimize_index_ = 0; }
// During an inprocessing phase, it is easier to detach all clause first,
// then simplify and then reattach them. Note however that during these
// two calls, it is not possible to use the solver unit-progation.
//
// Important: When reattach is called, we assume that none of their literal
// are fixed, so we don't do any special checks.
//
// These functions can be called multiple-time and do the right things. This
// way before doing something, you can call the corresponding function and be
// sure to be in a good state. I.e. always AttachAllClauses() before
// propagation and DetachAllClauses() before going to do an inprocessing pass
// that might transform them.
void DetachAllClauses();
void AttachAllClauses();
// These must only be called between [Detach/Attach]AllClauses() calls.
void InprocessingRemoveClause(SatClause* clause);
ABSL_MUST_USE_RESULT bool InprocessingFixLiteral(Literal true_literal);
ABSL_MUST_USE_RESULT bool InprocessingRewriteClause(
SatClause* clause, absl::Span<const Literal> new_clause);
// This can return nullptr if new_clause was of size one or two as these are
// treated differently. Note that none of the variable should be fixed in the
// given new clause.
SatClause* InprocessingAddClause(absl::Span<const Literal> new_clause);
// Contains, for each literal, the list of clauses that need to be inspected
// when the corresponding literal becomes false.
struct Watcher {
Watcher() = default;
Watcher(SatClause* c, Literal b, int i = 2)
: blocking_literal(b), start_index(i), clause(c) {}
// Optimization. A literal from the clause that sometimes allow to not even
// look at the clause memory when true.
Literal blocking_literal;
// Optimization. An index in the clause. Instead of looking for another
// literal to watch from the start, we will start from here instead, and
// loop around if needed. This allows to avoid bad quadratic corner cases
// and lead to an "optimal" complexity. See "Optimal Implementation of
// Watched Literals and more General Techniques", Ian P. Gent.
//
// Note that ideally, this should be part of a SatClause, so it can be
// shared across watchers. However, since we have 32 bits for "free" here
// because of the struct alignment, we store it here instead.
int32_t start_index;
SatClause* clause;
};
// This is exposed since some inprocessing code can heuristically exploit the
// currently watched literal and blocking literal to do some simplification.
const std::vector<Watcher>& WatcherListOnFalse(Literal false_literal) const {
return watchers_on_false_[false_literal];
}
private:
// Attaches the given clause. This eventually propagates a literal which is
// enqueued on the trail. Returns false if a contradiction was encountered.
bool AttachAndPropagate(SatClause* clause, Trail* trail);
// Launches all propagation when the given literal becomes false.
// Returns false if a contradiction was encountered.
bool PropagateOnFalse(Literal false_literal, Trail* trail);
// Attaches the given clause to the event: the given literal becomes false.
// The blocking_literal can be any literal from the clause, it is used to
// speed up PropagateOnFalse() by skipping the clause if it is true.
void AttachOnFalse(Literal literal, Literal blocking_literal,
SatClause* clause);
// Common code between LazyDetach() and Detach().
void InternalDetach(SatClause* clause);
absl::StrongVector<LiteralIndex, std::vector<Watcher>> watchers_on_false_;
// SatClause reasons by trail_index.
std::vector<SatClause*> reasons_;
// Indicates if the corresponding watchers_on_false_ list need to be
// cleaned. The boolean is_clean_ is just used in DCHECKs.
SparseBitset<LiteralIndex> needs_cleaning_;
bool is_clean_ = true;
BinaryImplicationGraph* implication_graph_;
Trail* trail_;
int64_t num_inspected_clauses_;
int64_t num_inspected_clause_literals_;
int64_t num_watched_clauses_;
mutable StatsGroup stats_;
// For DetachAllClauses()/AttachAllClauses().
bool all_clauses_are_attached_ = true;
// All the clauses currently in memory. This vector has ownership of the
// pointers. We currently do not use std::unique_ptr<SatClause> because it
// can't be used with some STL algorithms like std::partition.
//
// Note that the unit clauses and binary clause are not kept here.
std::vector<SatClause*> clauses_;
int to_minimize_index_ = 0;
int to_probe_index_ = 0;
// Only contains removable clause.
absl::flat_hash_map<SatClause*, ClauseInfo> clauses_info_;
DratProofHandler* drat_proof_handler_ = nullptr;
};
// A binary clause. This is used by BinaryClauseManager.
struct BinaryClause {
BinaryClause(Literal _a, Literal _b) : a(_a), b(_b) {}
bool operator==(BinaryClause o) const { return a == o.a && b == o.b; }
bool operator!=(BinaryClause o) const { return a != o.a || b != o.b; }
Literal a;
Literal b;
};
// A simple class to manage a set of binary clauses.
class BinaryClauseManager {
public:
BinaryClauseManager() = default;
// This type is neither copyable nor movable.
BinaryClauseManager(const BinaryClauseManager&) = delete;
BinaryClauseManager& operator=(const BinaryClauseManager&) = delete;
int NumClauses() const { return set_.size(); }
// Adds a new binary clause to the manager and returns true if it wasn't
// already present.
bool Add(BinaryClause c) {
std::pair<int, int> p(c.a.SignedValue(), c.b.SignedValue());
if (p.first > p.second) std::swap(p.first, p.second);
if (set_.find(p) == set_.end()) {
set_.insert(p);
newly_added_.push_back(c);
return true;
}
return false;
}
// Returns the newly added BinaryClause since the last ClearNewlyAdded() call.
const std::vector<BinaryClause>& newly_added() const { return newly_added_; }
void ClearNewlyAdded() { newly_added_.clear(); }
private:
absl::flat_hash_set<std::pair<int, int>> set_;
std::vector<BinaryClause> newly_added_;
};
// Special class to store and propagate clauses of size 2 (i.e. implication).
// Such clauses are never deleted. Together, they represent the 2-SAT part of
// the problem. Note that 2-SAT satisfiability is a polynomial problem, but
// W2SAT (weighted 2-SAT) is NP-complete.
//
// TODO(user): Most of the note below are done, but we currently only applies
// the reduction before the solve. We should consider doing more in-processing.
// The code could probably still be improved too.
//
// Note(user): All the variables in a strongly connected component are
// equivalent and can be thus merged as one. This is relatively cheap to compute
// from time to time (linear complexity). We will also get contradiction (a <=>
// not a) this way. This is done by DetectEquivalences().
//
// Note(user): An implication (a => not a) implies that a is false. I am not
// sure it is worth detecting that because if the solver assign a to true, it
// will learn that right away. I don't think we can do it faster.
//
// Note(user): The implication graph can be pruned. This is called the
// transitive reduction of a graph. For instance If a => {b,c} and b => {c},
// then there is no need to store a => {c}. The transitive reduction is unique
// on an acyclic graph. Computing it will allow for a faster propagation and
// memory reduction. It is however not cheap. Maybe simple lazy heuristics to
// remove redundant arcs are better. Note that all the learned clauses we add
// will never be redundant (but they could introduce cycles). This is done
// by ComputeTransitiveReduction().
//
// Note(user): This class natively support at most one constraints. This is
// a way to reduced significantly the memory and size of some 2-SAT instances.
// However, it is not fully exploited for pure SAT problems. See
// TransformIntoMaxCliques().
//
// Note(user): Add a preprocessor to remove duplicates in the implication lists.
// Note that all the learned clauses we add will never create duplicates.
//
// References for most of the above and more:
// - Brafman RI, "A simplifier for propositional formulas with many binary
// clauses", IEEE Trans Syst Man Cybern B Cybern. 2004 Feb;34(1):52-9.
// http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.4911
// - Marijn J. H. Heule, Matti Järvisalo, Armin Biere, "Efficient CNF
// Simplification Based on Binary Implication Graphs", Theory and Applications
// of Satisfiability Testing - SAT 2011, Lecture Notes in Computer Science
// Volume 6695, 2011, pp 201-215
// http://www.cs.helsinki.fi/u/mjarvisa/papers/heule-jarvisalo-biere.sat11.pdf
class BinaryImplicationGraph : public SatPropagator {
public:
explicit BinaryImplicationGraph(Model* model)
: SatPropagator("BinaryImplicationGraph"),
stats_("BinaryImplicationGraph"),
time_limit_(model->GetOrCreate<TimeLimit>()),
random_(model->GetOrCreate<ModelRandomGenerator>()),
trail_(model->GetOrCreate<Trail>()),
at_most_one_max_expansion_size_(
model->GetOrCreate<SatParameters>()
->at_most_one_max_expansion_size()) {
trail_->RegisterPropagator(this);
}
// This type is neither copyable nor movable.
BinaryImplicationGraph(const BinaryImplicationGraph&) = delete;
BinaryImplicationGraph& operator=(const BinaryImplicationGraph&) = delete;
~BinaryImplicationGraph() override {
IF_STATS_ENABLED({
LOG(INFO) << stats_.StatString();
LOG(INFO) << "num_redundant_implications " << num_redundant_implications_;
});
}
// SatPropagator interface.
bool Propagate(Trail* trail) final;
absl::Span<const Literal> Reason(const Trail& trail,
int trail_index) const final;
// Resizes the data structure.
void Resize(int num_variables);
// Returns true if there is no constraints in this class.
bool IsEmpty() const final {
return num_implications_ == 0 && at_most_ones_.empty();
}
// Adds the binary clause (a OR b), which is the same as (not a => b).
// Note that it is also equivalent to (not b => a).
//
// Preconditions:
// - If we are at root node, then none of the literal should be assigned.
// This is Checked and is there to track inefficiency as we do not need a
// clause in this case.
// - If we are at a positive decision level, we will propagate something if
// we can. However, if both literal are false, we will just return false
// and do nothing. In all other case, we will return true.
bool AddBinaryClause(Literal a, Literal b);
bool AddImplication(Literal a, Literal b) {
return AddBinaryClause(a.Negated(), b);
}
// When set, the callback will be called on ALL newly added binary clauses.
//
// The EnableSharing() function can be used to disable sharing temporarily for
// the clauses that are imported from the Shared repository already.
//
// TODO(user): this is meant to share clause between workers, hopefully the
// contention will not be too high. Double check and maybe add a batch version
// were we keep new implication and add them in batches.
void EnableSharing(bool enable) { enable_sharing_ = enable; }
void SetAdditionCallback(std::function<void(Literal, Literal)> f) {
add_callback_ = f;
}
// An at most one constraint of size n is a compact way to encode n * (n - 1)
// implications. This must only be called at level zero.
//
// Returns false if this creates a conflict. Currently this can only happens
// if there is duplicate literal already assigned to true in this constraint.
//
// TODO(user): Our algorithm could generalize easily to at_most_ones + a list
// of literals that will be false if one of the literal in the amo is at one.
// It is a way to merge common list of implications.
//
// If the final AMO size is smaller than at_most_one_expansion_size
// parameters, we fully expand it.
ABSL_MUST_USE_RESULT bool AddAtMostOne(absl::Span<const Literal> at_most_one);
// Uses the binary implication graph to minimize the given conflict by
// removing literals that implies others. The idea is that if a and b are two
// literals from the given conflict and a => b (which is the same as not(b) =>
// not(a)) then a is redundant and can be removed.
//
// Note that removing as many literals as possible is too time consuming, so
// we use different heuristics/algorithms to do this minimization.
// See the binary_minimization_algorithm SAT parameter and the .cc for more
// details about the different algorithms.
void MinimizeConflictWithReachability(std::vector<Literal>* c);
void MinimizeConflictExperimental(const Trail& trail,
std::vector<Literal>* c);
void MinimizeConflictFirst(const Trail& trail, std::vector<Literal>* c,
SparseBitset<BooleanVariable>* marked);
void MinimizeConflictFirstWithTransitiveReduction(const Trail& trail,
std::vector<Literal>* c,
absl::BitGenRef random);
// This must only be called at decision level 0 after all the possible
// propagations. It:
// - Removes the variable at true from the implications lists.
// - Frees the propagation list of the assigned literals.
void RemoveFixedVariables();
// Returns false if the model is unsat, otherwise detects equivalent variable
// (with respect to the implications only) and reorganize the propagation
// lists accordingly.
//
// TODO(user): Completely get rid of such literal instead? it might not be
// reasonable code-wise to remap our literals in all of our constraints
// though.
bool DetectEquivalences(bool log_info = false);
// Returns true if DetectEquivalences() has been called and no new binary
// clauses have been added since then. When this is true then there is no
// cycle in the binary implication graph (modulo the redundant literals that
// form a cycle with their representative).
bool IsDag() const { return is_dag_; }
// One must call DetectEquivalences() first, this is CHECKed.
// Returns a list so that if x => y, then x is after y.
const std::vector<LiteralIndex>& ReverseTopologicalOrder() const {
CHECK(is_dag_);
return reverse_topological_order_;
}
// Returns the list of literal "directly" implied by l. Beware that this can
// easily change behind your back if you modify the solver state.
const absl::InlinedVector<Literal, 6>& Implications(Literal l) const {
return implications_[l];
}
// Returns the representative of the equivalence class of l (or l itself if it
// is on its own). Note that DetectEquivalences() should have been called to
// get any non-trival results.
Literal RepresentativeOf(Literal l) const {
if (l.Index() >= representative_of_.size()) return l;
if (representative_of_[l] == kNoLiteralIndex) return l;
return Literal(representative_of_[l]);
}
// Prunes the implication graph by calling first DetectEquivalences() to
// remove cycle and then by computing the transitive reduction of the
// remaining DAG.
//
// Note that this can be slow (num_literals graph traversals), so we abort
// early if we start doing too much work.
//
// Returns false if the model is detected to be UNSAT (this needs to call
// DetectEquivalences() if not already done).
bool ComputeTransitiveReduction(bool log_info = false);
// Another way of representing an implication graph is a list of maximal "at
// most one" constraints, each forming a max-clique in the incompatibility
// graph. This representation is useful for having a good linear relaxation.
//
// This function will transform each of the given constraint into a maximal
// one in the underlying implication graph. Constraints that are redundant
// after other have been expanded (i.e. included into) will be cleared.
// Note that the order of constraints will be conserved.
//
// Returns false if the model is detected to be UNSAT (this needs to call
// DetectEquivalences() if not already done).
bool TransformIntoMaxCliques(std::vector<std::vector<Literal>>* at_most_ones,
int64_t max_num_explored_nodes = 1e8);
// LP clique cut heuristic. Returns a set of "at most one" constraints on the
// given literals or their negation that are violated by the current LP
// solution. Note that this assumes that
// lp_value(lit) = 1 - lp_value(lit.Negated()).
//
// The literal and lp_values vector are in one to one correspondence. We will
// only generate clique with these literals or their negation.
//
// TODO(user): Refine the heuristic and unit test!
const std::vector<std::vector<Literal>>& GenerateAtMostOnesWithLargeWeight(
const std::vector<Literal>& literals,
const std::vector<double>& lp_values);
// Heuristically identify "at most one" between the given literals, swap
// them around and return these amo as span inside the literals vector.
//
// TODO(user): Add a limit to make sure this do not take too much time.
std::vector<absl::Span<const Literal>> HeuristicAmoPartition(
std::vector<Literal>* literals);
// Number of literal propagated by this class (including conflicts).
int64_t num_propagations() const { return num_propagations_; }
// Number of literals inspected by this class during propagation.
int64_t num_inspections() const { return num_inspections_; }
// MinimizeClause() stats.
int64_t num_minimization() const { return num_minimization_; }
int64_t num_literals_removed() const { return num_literals_removed_; }
// Returns true if this literal is fixed or is equivalent to another literal.
// This means that it can just be ignored in most situation.
//
// Note that the set (and thus number) of redundant literal can only grow over
// time. This is because we always use the lowest index as representative of
// an equivalent class, so a redundant literal will stay that way.
bool IsRedundant(Literal l) const { return is_redundant_[l]; }
int64_t num_redundant_literals() const {
CHECK_EQ(num_redundant_literals_ % 2, 0);
return num_redundant_literals_;
}
// Number of implications removed by transitive reduction.
int64_t num_redundant_implications() const {
return num_redundant_implications_;
}
// Returns the number of current implications. Note that a => b and not(b) =>
// not(a) are counted separately since they appear separately in our
// propagation lists. The number of size 2 clauses that represent the same
// thing is half this number.
int64_t num_implications() const { return num_implications_; }
int64_t literal_size() const { return implications_.size(); }
// Extract all the binary clauses managed by this class. The Output type must
// support an AddBinaryClause(Literal a, Literal b) function.
//
// Important: This currently does NOT include at most one constraints.
//
// TODO(user): When extracting to cp_model.proto we could be more efficient
// by extracting bool_and constraint with many lhs terms.
template <typename Output>
void ExtractAllBinaryClauses(Output* out) const {
// TODO(user): Ideally we should just never have duplicate clauses in this
// class. But it seems we do in some corner cases, so lets not output them
// twice.
absl::flat_hash_set<std::pair<LiteralIndex, LiteralIndex>>
duplicate_detection;
for (LiteralIndex i(0); i < implications_.size(); ++i) {
const Literal a = Literal(i).Negated();
for (const Literal b : implications_[i]) {
// Note(user): We almost always have both a => b and not(b) => not(a) in
// our implications_ database. Except if ComputeTransitiveReduction()
// was aborted early, but in this case, if only one is present, the
// other could be removed, so we shouldn't need to output it.
if (a < b && duplicate_detection.insert({a, b}).second) {
out->AddBinaryClause(a, b);
}
}
}
}
void SetDratProofHandler(DratProofHandler* drat_proof_handler) {
drat_proof_handler_ = drat_proof_handler;
}
// Changes the reason of the variable at trail index to a binary reason.
// Note that the implication "new_reason => trail_[trail_index]" should be
// part of the implication graph.
void ChangeReason(int trail_index, Literal new_reason) {
CHECK(trail_->Assignment().LiteralIsTrue(new_reason));
reasons_[trail_index] = new_reason.Negated();
trail_->ChangeReason(trail_index, propagator_id_);
}
// The literals that are "directly" implied when literal is set to true. This
// is not a full "reachability". It includes at most ones propagation. The set
// of all direct implications is enough to describe the implications graph
// completely.
//
// When doing blocked clause elimination of bounded variable elimination, one
// only need to consider this list and not the full reachability.
const std::vector<Literal>& DirectImplications(Literal literal);
// Returns a random literal in DirectImplications(lhs). Note that this is
// biased if lhs appear in some most one, but it is constant time, which is a
// lot faster than computing DirectImplications() and then sampling from it.
LiteralIndex RandomImpliedLiteral(Literal lhs);
// A proxy for DirectImplications().size(), However we currently do not
// maintain it perfectly. It is exact each time DirectImplications() is
// called, and we update it in some situation but we don't deal with fixed
// variables, at_most ones and duplicates implications for now.
int DirectImplicationsEstimatedSize(Literal literal) const {
return estimated_sizes_[literal];
}
// Variable elimination by replacing everything of the form a => var => b by
// a => b. We ignore any a => a so the number of new implications is not
// always just the product of the two direct implication list of var and
// not(var). However, if a => var => a, then a and var are equivalent, so this
// case will be removed if one run DetectEquivalences() before this.
// Similarly, if a => var => not(a) then a must be false and this is detected
// and dealt with by FindFailedLiteralAroundVar().
bool FindFailedLiteralAroundVar(BooleanVariable var, bool* is_unsat);
int64_t NumImplicationOnVariableRemoval(BooleanVariable var);
void RemoveBooleanVariable(
BooleanVariable var, std::deque<std::vector<Literal>>* postsolve_clauses);
bool IsRemoved(Literal l) const { return is_removed_[l]; }
void RemoveAllRedundantVariables(
std::deque<std::vector<Literal>>* postsolve_clauses);
void CleanupAllRemovedAndFixedVariables();
// ExpandAtMostOneWithWeight() will increase this, so a client can put a limit
// on this possibly expansive operation.
void ResetWorkDone() { work_done_in_mark_descendants_ = 0; }
int64_t WorkDone() const { return work_done_in_mark_descendants_; }
// Same as ExpandAtMostOne() but try to maximize the weight in the clique.
template <bool use_weight = true>
std::vector<Literal> ExpandAtMostOneWithWeight(
absl::Span<const Literal> at_most_one,
const absl::StrongVector<LiteralIndex, bool>& can_be_included,
const absl::StrongVector<LiteralIndex, double>& expanded_lp_values);
// Restarts the at_most_one iterator.
void ResetAtMostOneIterator() { at_most_one_iterator_ = 0; }
// Returns the next at_most_one, or a span of size 0 when finished.
absl::Span<const Literal> NextAtMostOne();
// Clean up implications list that might have duplicates.
void RemoveDuplicates();
private:
// Mark implications_[a] for cleanup in RemoveDuplicates().
void NotifyPossibleDuplicate(Literal a);
// Simple wrapper to not forget to output newly fixed variable to the DRAT
// proof if needed. This will propagate right away the implications.
bool FixLiteral(Literal true_literal);
// Propagates all the direct implications of the given literal becoming true.
// Returns false if a conflict was encountered, in which case
// trail->SetFailingClause() will be called with the correct size 2 clause.
// This calls trail->Enqueue() on the newly assigned literals.
bool PropagateOnTrue(Literal true_literal, Trail* trail);
// Remove any literal whose negation is marked (except the first one).
void RemoveRedundantLiterals(std::vector<Literal>* conflict);
// Fill is_marked_ with all the descendant of root.
// Note that this also use bfs_stack_.
void MarkDescendants(Literal root);
// Expands greedily the given at most one until we get a maximum clique in
// the underlying incompatibility graph. Note that there is no guarantee that
// if this is called with any sub-clique of the result we will get the same
// maximal clique.
std::vector<Literal> ExpandAtMostOne(absl::Span<const Literal> at_most_one,
int64_t max_num_explored_nodes);
// Process all at most one constraints starting at or after base_index in
// at_most_one_buffer_. This replace literal by their representative, remove
// fixed literals and deal with duplicates. Return false iff the model is
// UNSAT.
//
// If the final AMO size is smaller than the at_most_one_expansion_size
// parameters, we fully expand it.
bool CleanUpAndAddAtMostOnes(int base_index);
// To be used in DCHECKs().
bool InvariantsAreOk();
// Return the at most one encoded at the given start.
// Important: this is only valid until a new at_most one is added.
absl::Span<const Literal> AtMostOne(int start) const;
mutable StatsGroup stats_;
TimeLimit* time_limit_;
ModelRandomGenerator* random_;
Trail* trail_;
DratProofHandler* drat_proof_handler_ = nullptr;
// Binary reasons by trail_index. We need a deque because we kept pointers to
// elements of this array and this can dynamically change size.
std::deque<Literal> reasons_;
// This is indexed by the Index() of a literal. Each list stores the
// literals that are implied if the index literal becomes true.
//
// Using InlinedVector helps quite a bit because on many problems, a literal
// only implies a few others. Note that on a 64 bits computer we get exactly
// 6 inlined int32_t elements without extra space, and the size of the inlined
// vector is 4 times 64 bits.
//
// TODO(user): We could be even more efficient since a size of int32_t is
// enough for us and we could store in common the inlined/not-inlined size.
absl::StrongVector<LiteralIndex, absl::InlinedVector<Literal, 6>>
implications_;
int64_t num_implications_ = 0;
// Used by RemoveDuplicates() and NotifyPossibleDuplicate().
absl::StrongVector<LiteralIndex, bool> might_have_dups_;
std::vector<Literal> to_clean_;
// Internal representation of at_most_one constraints. Each entry point to the
// start of a constraint in the buffer.
//
// TRICKY: The first literal is actually the size of the at_most_one.
// Most users should just use AtMostOne(start).
//
// When LiteralIndex is true, then all entry in the at most one
// constraint must be false except the one referring to LiteralIndex.
//
// TODO(user): We could be more cache efficient by combining this with
// implications_ in some way. Do some propagation speed benchmark.
absl::StrongVector<LiteralIndex, absl::InlinedVector<int32_t, 6>>
at_most_ones_;
std::vector<Literal> at_most_one_buffer_;
const int at_most_one_max_expansion_size_;
int at_most_one_iterator_ = 0;
// Invariant: implies_something_[l] should be true iff implications_[l] or
// at_most_ones_[l] might be non-empty.
//
// For problems with a large number of variables and sparse implications_ or
// at_most_ones_ entries, checking this is way faster during
// MarkDescendants(). See for instance proteindesign122trx11p8.pb.gz.
Bitset64<LiteralIndex> implies_something_;
// Used by GenerateAtMostOnesWithLargeWeight().
std::vector<std::vector<Literal>> tmp_cuts_;
// Some stats.
int64_t num_propagations_ = 0;
int64_t num_inspections_ = 0;
int64_t num_minimization_ = 0;
int64_t num_literals_removed_ = 0;
int64_t num_redundant_implications_ = 0;
int64_t num_redundant_literals_ = 0;
// Bitset used by MinimizeClause().
// TODO(user): use the same one as the one used in the classic minimization
// because they are already initialized. Moreover they contains more
// information.
SparseBitset<LiteralIndex> is_marked_;
SparseBitset<LiteralIndex> is_simplified_;
// Temporary stack used by MinimizeClauseWithReachability().
std::vector<Literal> dfs_stack_;
// Used to limit the work done by ComputeTransitiveReduction() and
// TransformIntoMaxCliques().
int64_t work_done_in_mark_descendants_ = 0;
std::vector<Literal> bfs_stack_;
// Used by ComputeTransitiveReduction() in case we abort early to maintain
// the invariant checked by InvariantsAreOk(). Some of our algo
// relies on this to be always true.
std::vector<std::pair<Literal, Literal>> tmp_removed_;
// Filled by DetectEquivalences().
bool is_dag_ = false;
std::vector<LiteralIndex> reverse_topological_order_;
Bitset64<LiteralIndex> is_redundant_;
absl::StrongVector<LiteralIndex, LiteralIndex> representative_of_;
// For in-processing and removing variables.
std::vector<Literal> direct_implications_;
std::vector<Literal> direct_implications_of_negated_literal_;
absl::StrongVector<LiteralIndex, bool> in_direct_implications_;
absl::StrongVector<LiteralIndex, bool> is_removed_;
absl::StrongVector<LiteralIndex, int> estimated_sizes_;
// For RemoveFixedVariables().
int num_processed_fixed_variables_ = 0;
bool enable_sharing_ = true;
std::function<void(Literal, Literal)> add_callback_ = nullptr;
};
extern template std::vector<Literal>
BinaryImplicationGraph::ExpandAtMostOneWithWeight<true>(
const absl::Span<const Literal> at_most_one,
const absl::StrongVector<LiteralIndex, bool>& can_be_included,
const absl::StrongVector<LiteralIndex, double>& expanded_lp_values);
extern template std::vector<Literal>
BinaryImplicationGraph::ExpandAtMostOneWithWeight<false>(
const absl::Span<const Literal> at_most_one,
const absl::StrongVector<LiteralIndex, bool>& can_be_included,
const absl::StrongVector<LiteralIndex, double>& expanded_lp_values);
} // namespace sat
} // namespace operations_research
#endif // OR_TOOLS_SAT_CLAUSE_H_