forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeasibility_pump.h
244 lines (200 loc) · 9.28 KB
/
feasibility_pump.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef OR_TOOLS_SAT_FEASIBILITY_PUMP_H_
#define OR_TOOLS_SAT_FEASIBILITY_PUMP_H_
#include <algorithm>
#include <cstdint>
#include <utility>
#include <vector>
#include "absl/container/flat_hash_map.h"
#include "ortools/base/strong_vector.h"
#include "ortools/glop/revised_simplex.h"
#include "ortools/lp_data/lp_data.h"
#include "ortools/lp_data/lp_data_utils.h"
#include "ortools/lp_data/lp_types.h"
#include "ortools/sat/cp_model_mapping.h"
#include "ortools/sat/integer.h"
#include "ortools/sat/linear_constraint.h"
#include "ortools/sat/model.h"
#include "ortools/sat/sat_base.h"
#include "ortools/sat/sat_parameters.pb.h"
#include "ortools/sat/sat_solver.h"
#include "ortools/sat/synchronization.h"
#include "ortools/sat/util.h"
#include "ortools/util/time_limit.h"
namespace operations_research {
namespace sat {
class FeasibilityPump {
public:
explicit FeasibilityPump(Model* model);
~FeasibilityPump();
typedef glop::RowIndex ConstraintIndex;
void SetMaxFPIterations(int max_iter) {
max_fp_iterations_ = std::max(1, max_iter);
}
// Add a new linear constraint to this LP.
void AddLinearConstraint(const LinearConstraint& ct);
// Set the coefficient of the variable in the objective. Calling it twice will
// overwrite the previous value. Note that this doesn't set the objective
// coefficient if the variable doesn't appear in any constraints. So this has
// to be called after all the constraints are added.
void SetObjectiveCoefficient(IntegerVariable ivar, IntegerValue coeff);
// Returns the LP value of a variable in the current
// solution. These functions should only be called when HasSolution() is true.
bool HasLPSolution() const { return lp_solution_is_set_; }
double LPSolutionObjectiveValue() const { return lp_objective_; }
double GetLPSolutionValue(IntegerVariable variable) const;
bool LPSolutionIsInteger() const { return lp_solution_is_integer_; }
double LPSolutionFractionality() const { return lp_solution_fractionality_; }
// Returns the Integer solution value of a variable in the current rounded
// solution. These functions should only be called when HasIntegerSolution()
// is true.
bool HasIntegerSolution() const { return integer_solution_is_set_; }
int64_t IntegerSolutionObjectiveValue() const {
return integer_solution_objective_;
}
bool IntegerSolutionIsFeasible() const {
return integer_solution_is_feasible_;
}
int64_t GetIntegerSolutionValue(IntegerVariable variable) const;
// Returns false if the model is proven to be infeasible.
bool Solve();
private:
// Solve the LP, returns false if something went wrong in the LP solver.
bool SolveLp();
// Calls the specified rounding method in the parameters. Returns false if the
// rounding couldn't be finished.
bool Round();
// Round the fractional LP solution values to nearest integer values. This
// rounding always finishes so always returns true.
bool NearestIntegerRounding();
// Counts the number of up and down locks as defined below.
// #up_locks = #upper bounded constraints with positive coeff for var
// + #lower bounded constraints with negative coeff for var.
// #down_locks = #lower bounded constraints with positive coeff for var
// + #upper bounded constraints with negative coeff for var.
// Rounds the variable in the direction of lesser locks. When the
// fractionality is low (less than 0.1), this reverts to nearest integer
// rounding to avoid rounding almost integer values in wrong direction.
// This rounding always finishes so always returns true.
bool LockBasedRounding();
// Similar to LockBasedRounding except this only considers locks of active
// constraints.
bool ActiveLockBasedRounding();
// This is expensive rounding algorithm. We round variables one by one and
// propagate the bounds in between. If none of the rounded values fall in
// the continuous domain specified by lower and upper bound, we use the
// current lower/upper bound (whichever one is closest) instead of rounding
// the fractional lp solution value. If both the rounded values are in the
// domain, we round to nearest integer. This idea was presented in the paper
// "Feasibility pump 2.0" (2009) by Matteo Fischetti, Domenico Salvagnin.
//
// This rounding might not finish either because the time limit is reached or
// the model is detected to be unsat. Returns false in those cases.
bool PropagationRounding();
void FillIntegerSolutionStats();
// Loads the lp_data_.
void InitializeWorkingLP();
// Changes the LP objective and bounds of the norm constraints so the new
// objective also tries to minimize the distance to the rounded solution.
void L1DistanceMinimize();
// Stores the solutions in the shared repository. Stores LP solution if it is
// integer and stores the integer solution if it is feasible.
void MaybePushToRepo();
void PrintStats();
// Returns the variable value on the same scale as the CP variable value.
double GetVariableValueAtCpScale(glop::ColIndex var);
// Shortcut for an integer linear expression type.
using LinearExpression = std::vector<std::pair<glop::ColIndex, IntegerValue>>;
// Gets or creates an LP variable that mirrors a model variable.
// The variable should be a positive reference.
glop::ColIndex GetOrCreateMirrorVariable(IntegerVariable positive_variable);
// Updates the bounds of the LP variables from the CP bounds.
void UpdateBoundsOfLpVariables();
// This epsilon is related to the precision of the value returned by the LP
// once they have been scaled back into the CP domain. So for large domain or
// cost coefficient, we may have some issues.
static const double kCpEpsilon;
// Initial problem in integer form.
// We always sort the inner vectors by increasing glop::ColIndex.
struct LinearConstraintInternal {
IntegerValue lb;
IntegerValue ub;
LinearExpression terms;
};
LinearExpression integer_objective_;
IntegerValue objective_infinity_norm_ = IntegerValue(0);
double objective_normalization_factor_ = 0.0;
double mixing_factor_ = 1.0;
absl::StrongVector<glop::RowIndex, LinearConstraintInternal> integer_lp_;
int model_vars_size_ = 0;
// Underlying LP solver API.
glop::LinearProgram lp_data_;
glop::RevisedSimplex simplex_;
glop::ColMapping norm_variables_;
glop::ColToRowMapping norm_lhs_constraints_;
glop::ColToRowMapping norm_rhs_constraints_;
// For the scaling.
glop::LpScalingHelper scaler_;
// Structures used for mirroring IntegerVariables inside the underlying LP
// solver: an integer variable var is mirrored by mirror_lp_variable_[var].
// Note that these indices are dense in [0, mirror_lp_variable_.size()] so
// they can be used as vector indices.
std::vector<IntegerVariable> integer_variables_;
absl::flat_hash_map<IntegerVariable, glop::ColIndex> mirror_lp_variable_;
// True if the variable was binary before we apply scaling.
std::vector<bool> var_is_binary_;
// The following lock information is computed only once.
// Number of constraints restricting variable to take higher (resp. lower)
// values.
std::vector<int> var_up_locks_;
std::vector<int> var_down_locks_;
// We need to remember what to optimize if an objective is given, because
// then we will switch the objective between feasibility and optimization.
bool objective_is_defined_ = false;
// Singletons from Model.
const SatParameters& sat_parameters_;
TimeLimit* time_limit_;
IntegerTrail* integer_trail_;
Trail* trail_;
IntegerEncoder* integer_encoder_;
SharedIncompleteSolutionManager* incomplete_solutions_;
SatSolver* sat_solver_;
IntegerDomains* domains_;
const CpModelMapping* mapping_;
// Last OPTIMAL/Feasible solution found by a call to the underlying LP solver.
bool lp_solution_is_set_ = false;
bool lp_solution_is_integer_ = false;
double lp_objective_;
std::vector<double> lp_solution_;
std::vector<double> best_lp_solution_;
// We use max fractionality of all variables.
double lp_solution_fractionality_;
// Rounded Integer solution. This might not be feasible.
bool integer_solution_is_set_ = false;
bool integer_solution_is_feasible_ = false;
int64_t integer_solution_objective_;
std::vector<int64_t> integer_solution_;
std::vector<int64_t> best_integer_solution_;
int num_infeasible_constraints_;
// We use max infeasibility of all constraints.
int64_t integer_solution_infeasibility_;
// Sum of all simplex iterations performed by this class. This is useful to
// test the incrementality and compare to other solvers.
int64_t total_num_simplex_iterations_ = 0;
// TODO(user): Tune default value. Expose as parameter.
int max_fp_iterations_ = 20;
};
} // namespace sat
} // namespace operations_research
#endif // OR_TOOLS_SAT_FEASIBILITY_PUMP_H_