forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcascade-rpn_fast-rcnn_r50-caffe_fpn_1x_coco.py
27 lines (24 loc) · 1.25 KB
/
cascade-rpn_fast-rcnn_r50-caffe_fpn_1x_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
_base_ = '../fast_rcnn/fast-rcnn_r50-caffe_fpn_1x_coco.py'
model = dict(
roi_head=dict(
bbox_head=dict(
bbox_coder=dict(target_stds=[0.04, 0.04, 0.08, 0.08]),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.5),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))),
# model training and testing settings
train_cfg=dict(
rcnn=dict(
assigner=dict(
pos_iou_thr=0.65, neg_iou_thr=0.65, min_pos_iou=0.65),
sampler=dict(num=256))),
test_cfg=dict(rcnn=dict(score_thr=1e-3)))
# MMEngine support the following two ways, users can choose
# according to convenience
# train_dataloader = dict(dataset=dict(proposal_file='proposals/crpn_r50_caffe_fpn_1x_train2017.pkl')) # noqa
_base_.train_dataloader.dataset.proposal_file = 'proposals/crpn_r50_caffe_fpn_1x_train2017.pkl' # noqa
# val_dataloader = dict(dataset=dict(proposal_file='proposals/crpn_r50_caffe_fpn_1x_val2017.pkl')) # noqa
# test_dataloader = val_dataloader
_base_.val_dataloader.dataset.proposal_file = 'proposals/crpn_r50_caffe_fpn_1x_val2017.pkl' # noqa
test_dataloader = _base_.val_dataloader
optim_wrapper = dict(clip_grad=dict(max_norm=35, norm_type=2))