-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmnist_cnn_autoencoder.c
173 lines (152 loc) · 5.69 KB
/
mnist_cnn_autoencoder.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
//---------------------------------------------------------
// Cat's eye
//
// ©2021 Yuichiro Nakada
//---------------------------------------------------------
// gcc mnist_autoencoder.c -o mnist_autoencoder -lm -Ofast -fopenmp -lgomp
// clang mnist_autoencoder.c -o mnist_autoencoder -lm -Ofast
#define CATS_USE_FLOAT
//#define CATS_OPENCL
//#define CATS_OPENGL
#include "catseye.h"
#define STB_IMAGE_WRITE_IMPLEMENTATION
#include "stb_image_write.h"
#include"svg.h"
#define ETA 1e-2
//#define ETA 1e-3
int main()
{
const int wh = 28;
const int size = 28*28; // 入出力層(28x28)
const int sample = 60000;
// https://rightcode.co.jp/blog/information-technology/autoencoder-dimensionality-reduction-implications-of-machine-learning
/* CatsEye_layer u[] = { // epoch 20/ eta 1e-5
{ size, CATS_CONV, ETA, .ksize=3, .stride=1, .padding=1, .ch=16 }, // b, 16, 10x10
{ 0, CATS_ACT_LEAKY_RELU },
{ 0, CATS_MAXPOOL, .ksize=2, .stride=2 }, // b, 16, 5x5
{ 0, CATS_CONV, ETA, .ksize=3, .stride=2, .padding=1, .ch=32 }, // b, 32, 3x3
{ 0, CATS_ACT_LEAKY_RELU },
{ 0, CATS_MAXPOOL, .ksize=2, .stride=1 }, // b, 32, 2x2
{ 0, CATS_CONV, ETA, .ksize=3, .stride=1, .padding=0, .ch=64 }, // b, 64, 1x1
{ 0, CATS_ACT_LEAKY_RELU },
{ size, CATS_LINEAR, ETA },
{ 32, CATS_ACT_RELU },
{ 32, CATS_LINEAR, ETA },
{ 2, CATS_ACT_RELU },
{ 2, CATS_LINEAR, ETA },
{ 32, CATS_ACT_RELU },
{ 32, CATS_LINEAR, ETA },
{ size, CATS_ACT_SIGMOID },
{ size, CATS_LOSS_MSE },
};*/
/* CatsEye_layer u[] = { // 1e-2
{ size, CATS_CONV, ETA, .ksize=3, .stride=2, .padding=1, .ch=4 },
// { size, CATS_PADDING, .padding=1, .ich=1 },
// { 0, CATS_CONV, ETA, .ksize=3, .stride=1, .padding=1, .ch=4 },
{ 0, CATS_ACT_LEAKY_RELU },
{ 0, CATS_CONV, ETA, .ksize=3, .stride=2, .padding=1, .ch=16 },
{ 0, CATS_ACT_LEAKY_RELU, .name="encoder" },
// { 0, CATS_PIXELSHUFFLER, .r=2, .ch=8 },
{ 0, CATS_PIXELSHUFFLER, .r=2, .ch=4 },
{ 0, CATS_PIXELSHUFFLER, .r=2, .ch=1 },
// { 0, CATS_CONV, 0.001, .ksize=1, .stride=1, .ch=4 },
// { size, CATS_ACT_SIGMOID },
{ size, CATS_LOSS_MSE },
};*/
CatsEye_layer u[] = { // https://kitakantech.com/cifar10-autoencoder/
// 28 x 28 x 1
{ size, CATS_CONV, ETA, .ksize=5, .stride=2, .padding=2, .ch=8 },
{ 0, CATS_ACT_LEAKY_RELU },
// 14 x 14 x 4
{ 0, CATS_CONV, ETA, .ksize=5, .stride=2, .padding=2, .ch=8 },
{ 0, CATS_ACT_LEAKY_RELU, .name="encoder" },
{ 0, CATS_LINEAR, ETA },
{ size, CATS_PIXELSHUFFLER, .r=2, .ch=4 },
{ 0, CATS_PIXELSHUFFLER, .r=2, .ch=1 },
/* { 0, CATS_DECONV, ETA, .ksize=6, .stride=2, .padding=2, .ch=8 },
{ 0, CATS_ACT_LEAKY_RELU },
{ 0, CATS_DECONV, ETA, .ksize=6, .stride=2, .padding=2, .ch=1 },*/
{ size, CATS_ACT_SIGMOID },
{ size, CATS_LOSS_MSE },
};
#if 0
CatsEye_layer u[] = {
{ size, CATS_PADDING, .padding=1, .ich=3 },
{ 0, CATS_CONV, 0.001, .ksize=3, .stride=1, .ch=16*3, .sx=34, .sy=34, .ich=3 },
{ 0, CATS_ACT_LEAKY_RELU, /*.alpha=0.01*/ },
{ 0, CATS_MAXPOOL, .ksize=2, .stride=2 },
{ 0, CATS_CONV, 0.001, .ksize=1, .stride=1, .ch=4*3 },
{ 0, CATS_ACT_LEAKY_RELU },
{ 0, CATS_PIXELSHUFFLER, .r=2, .ch=3 },
{ size, CATS_LOSS_MSE },
};
#endif
CatsEye cat = { .batch=1 }; // 0.0%
// CatsEye cat = { .batch=256 }; // 0.0%
CatsEye__construct(&cat, u);
int16_t t[sample]; // ラベルデータ
real *x = malloc(sizeof(real)*size*sample); // 訓練データ
uint8_t *data = malloc(sample*size);
// 訓練データの読み込み
printf("Training data:\n");
FILE *fp = fopen("train-images-idx3-ubyte", "rb");
if (fp==NULL) return -1;
fread(data, 16, 1, fp); // header
fread(data, size, sample, fp); // data
for (int i=0; i<sample*size; i++) x[i] = data[i] / 255.0;
fclose(fp);
fp = fopen("train-labels-idx1-ubyte", "rb");
if (fp==NULL) return -1;
fread(data, 8, 1, fp); // header
fread(data, 1, sample, fp); // data
for (int i=0; i<sample; i++) t[i] = data[i];
fclose(fp);
free(data);
// 多層パーセプトロンの訓練
printf("Starting training using (stochastic) gradient descent\n");
CatsEye_train(&cat, x, x, sample, 20/*epoch*/, sample, 0);
// CatsEye_train(&cat, x, x, sample-1, 100, 1e-2); // SGD[h64/3.3], SGD[h64+s/7.4/OK]
printf("Training complete\n");
// CatsEye_save(&cat, "mnist_autoencoder.weights");
// CatsEye_saveJson(&cat, "mnist_autoencoder.json");
// 結果の表示
uint8_t *pixels = malloc(size*100);
for (int i=0; i<50; i++) {
CatsEye_forward(&cat, x+size*i);
CatsEye_layer *l = &cat.layer[cat.end-1];
double mse = 0;
uint8_t *p = &pixels[(i/10)*size*10 + (i%10)*wh];
for (int j=0; j<size; j++) {
p[(j/wh)*wh*10+(j%wh)] = (uint8_t)(l->z[j] * 255.0);
mse += (x[size*i+j]-l->z[j])*(x[size*i+j]-l->z[j]);
p[5*size*10+(j/wh)*wh*10+(j%wh)] = (uint8_t)(x[size*i+j] * 255.0);
}
// printf("%d mse %lf\n", t[i], mse);
}
stbi_write_png("mnist_cnn_autoencoder.png", wh*10, wh*10, 1, pixels, wh*10);
memset(pixels, 0, size*100);
/* int m = (hidden<100 ? hidden : 100);
for (int n=0; n<m; n++) {
CatsEye_visualizeWeights(&cat, n, 28, &pixels[(n/10)*28*28*10 + (n%10)*28], 28*10);
}
stbi_write_png("mnist_autoencoder_weights.png", 28*10, 28*10, 1, pixels, 28*10);*/
free(pixels);
// 潜在変数
double xs[sample], ys[sample];
for (int i=0; i<sample/50; i++) {
CatsEye_forward(&cat, x+size*i);
int e = CatsEye_getLayer(&cat, "encoder");
CatsEye_layer *l = &cat.layer[e];
xs[i] = l->z[0];
ys[i] = l->z[1];
}
svg *psvg = svg_create(512, 512);
//if (!psvg) return;
svg_scatter(psvg, xs, ys, sample/50, t, 10, SVG_FRAME);
svg_finalize(psvg);
svg_save(psvg, "mnist_cnn_autoencoder.svg");
svg_free(psvg);
free(x);
CatsEye__destruct(&cat);
return 0;
}