-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsgemm_gl1.h
330 lines (274 loc) · 8.93 KB
/
sgemm_gl1.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
//---------------------------------------------------------
// Cat's eye
//
// ©2020 Yuichiro Nakada
//---------------------------------------------------------
// clang -Os gpgpu_gl4.c -o gpgpu_gl4 `pkg-config --libs --cflags gl egl gbm` -lglfw
// dnf install mesa-libgbm-devel libdrm-devel mesa-libGL-devel mesa-libGLU-devel mesa-libEGL-devel mesa-libGLES-devel glfw-
#include "gpgpu_gl4.h"
// https://www.ibiblio.org/e-notes/webgl/gpu/mul/sgemm.htm
/*static const char _gemm1_cnn[] = STRINGIFY(
\n#version 430\n
layout (local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
layout (std430, binding = 0) readonly buffer ssbA {
float A[];
};
layout (std430, binding = 1) readonly buffer ssbB {
float B[];
};
layout (std430, binding = 2) writeonly buffer ssbC {
float C[];
};
uniform float param[16]; // 0:M 1:N 2:K
void main() {
int M = int(param[0]);
int N = int(param[1]);
int K = int(param[2]);
// Thread identifiers
uint globalRow = gl_GlobalInvocationID.x; // Row ID of C (0..M)
uint globalCol = gl_GlobalInvocationID.y; // Col ID of C (0..N)
if (M<=globalRow || N<=globalCol) return;
// Compute a single element (loop over K)
float acc = 0.0;
for (uint k=0u; k<K; k++) {
acc += A[k*M + globalRow] * B[globalCol*K + k];
}
// Store the result
C[globalCol*M + globalRow] = acc;
}
);*/
static const char _gemm1_simple_rnn[] = STRINGIFY(
\n#version 430\n
layout (local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
layout (std430, binding = 0) readonly buffer ssbA {
float A[];
};
layout (std430, binding = 1) readonly buffer ssbB {
float B[];
};
layout (std430, binding = 2) writeonly buffer ssbC {
float C[];
};
uniform int param[16]; // 0:M 1:N 2:K
void main() { // C := A * B
int M = int(param[0]);
int N = int(param[1]);
int K = int(param[2]);
// Thread identifiers
uint globalRow = gl_GlobalInvocationID.x; // Row ID of C (0..M)
uint globalCol = gl_GlobalInvocationID.y; // Col ID of C (0..N)
if (M<=globalRow || N<=globalCol) return;
// Compute a single element (loop over K)
float acc = 0.0;
for (uint k=0u; k<K; k++) {
acc += A[k + globalRow*K] * B[globalCol + N*k]; // RNN
}
// Store the result
C[globalCol + globalRow*N] = acc; // Row major
}
);
static const char _gemm1_rnn[] = STRINGIFY(
\n#version 430\n
layout (local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
layout (std430, binding = 0) readonly buffer ssbA {
float A[];
};
layout (std430, binding = 1) readonly buffer ssbB {
float B[];
};
layout (std430, binding = 2) buffer ssbC {
float C[];
};
//uniform int param[16]; // 0:M 1:N 2:K
uniform float param[16]; // 0:M 1:N 2:K
void main() { // C := A * B
// int M = param[0];
// int N = param[1];
// int K = param[2];
int M = int(param[0]);
int N = int(param[1]);
int K = int(param[2]);
float alpha = param[3];
float beta = param[4];
// Thread identifiers
uint globalRow = gl_GlobalInvocationID.x; // Row ID of C (0..M)
uint globalCol = gl_GlobalInvocationID.y; // Col ID of C (0..N)
if (M<=globalRow || N<=globalCol) return;
// Compute a single element (loop over K)
float acc = 0.0;
for (uint k=0u; k<K; k++) {
acc += A[k + globalRow*K] * B[globalCol + N*k]; // RNN
}
// Store the result
// C[globalCol + globalRow*N] = acc; // Row major
// C[globalCol + globalRow*N] *= beta + alpha * acc; // Row major
C[globalCol + globalRow*N] = alpha * acc + beta * C[globalCol + globalRow*N]; // Row major
}
);
static const char _gemm1_rnt[] = STRINGIFY(
\n#version 430\n
layout (local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
layout (std430, binding = 0) readonly buffer ssbA {
float A[];
};
layout (std430, binding = 1) readonly buffer ssbB {
float B[];
};
layout (std430, binding = 2) buffer ssbC {
float C[];
};
uniform float param[16]; // 0:M 1:N 2:K
void main() {
int M = int(param[0]);
int N = int(param[1]);
int K = int(param[2]);
float alpha = param[3];
float beta = param[4];
// Thread identifiers
uint globalRow = gl_GlobalInvocationID.x; // Row ID of C (0..M)
uint globalCol = gl_GlobalInvocationID.y; // Col ID of C (0..N)
if (M<=globalRow || N<=globalCol) return;
// Compute a single element (loop over K)
float acc = 0.0;
for (uint k=0u; k<K; k++) {
acc += A[k + globalRow*K] * B[globalCol*K + k]; // RNT
}
// Store the result
C[globalCol + globalRow*N] = alpha * acc + beta * C[globalCol + globalRow*N]; // Row major
}
);
static const char _gemm1_rtn[] = STRINGIFY(
\n#version 430\n
layout (local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
layout (std430, binding = 0) readonly buffer ssbA {
float A[];
};
layout (std430, binding = 1) readonly buffer ssbB {
float B[];
};
layout (std430, binding = 2) buffer ssbC {
float C[];
};
uniform float param[16]; // 0:M 1:N 2:K
void main() {
int M = int(param[0]);
int N = int(param[1]);
int K = int(param[2]);
float alpha = param[3];
float beta = param[4];
// Thread identifiers
uint globalRow = gl_GlobalInvocationID.x; // Row ID of C (0..M)
uint globalCol = gl_GlobalInvocationID.y; // Col ID of C (0..N)
if (M<=globalRow || N<=globalCol) return;
// Compute a single element (loop over K)
float acc = 0.0;
for (uint k=0u; k<K; k++) {
acc += A[M*k + globalRow] * B[globalCol + N*k]; // RTN
}
// Store the result
C[globalCol + globalRow*N] = alpha * acc + beta * C[globalCol + globalRow*N]; // Row major
}
);
#define GEMM1_RNN 0
#define GEMM1_RNT 1
#define GEMM1_RTN 2
#define GEMM1_SRNN 3
GLuint sgemm_program[10];
void sgemm_gl_init(int s1, int s2, int s3)
{
coInit();
// sgemm_program[0] = coCreateShaderProgram(_gemm1_cnn);
sgemm_program[GEMM1_RNN] = coCreateShaderProgram(_gemm1_rnn);
sgemm_program[GEMM1_RNT] = coCreateShaderProgram(_gemm1_rnt);
sgemm_program[GEMM1_RTN] = coCreateShaderProgram(_gemm1_rtn);
sgemm_program[GEMM1_SRNN] = coCreateShaderProgram(_gemm1_simple_rnn);
int size[] = {s1, s2, s3};
coCreateBuffer(size, 3);
}
void sgemm_gl_finish()
{
coDeleteBuffer();
coDeleteProgram(sgemm_program[GEMM1_RNN]);
coDeleteProgram(sgemm_program[GEMM1_RNT]);
coDeleteProgram(sgemm_program[GEMM1_RTN]);
coDeleteProgram(sgemm_program[GEMM1_SRNN]);
}
/*inline*/ void sgemm_gl(int type, int m, int n, int k, float alpha, float *a, float *b, float beta, float *c)
{
float param[16];
param[0] = m;
param[1] = n;
param[2] = k;
param[3] = alpha;
param[4] = beta;
coWrite(0, m*k*sizeof(float), a);
coWrite(1, k*n*sizeof(float), b);
/* if (beta!=0)*/ coWrite(2, m*n*sizeof(float), c);
// glMemoryBarrier(GL_SHADER_STORAGE_BARRIER_BIT); // Sync here to make writes visible
coRun(sgemm_program[type], m/8+1, n/8+1, 1, param);
glMemoryBarrier(GL_SHADER_STORAGE_BARRIER_BIT); // Sync here to make writes visible
// glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT);
coRead(2, m*n*sizeof(float), c);
/* printf("sgemm_gl%d: %d,%d,%d\n", type, m, n, k);
for (int i=0; i<10; i++) printf("%f ", c[i]);
printf("\n");
coRead(0, m*k*sizeof(float), a);
for (int i=0; i<10; i++) printf("%f ", a[i]);
printf("\n");
coRead(0, k*n*sizeof(float), b);
for (int i=0; i<10; i++) printf("%f ", b[i]);
printf("\n");*/
}
#ifndef CATS_OPENGL
static inline void im2col(const float *im, const int channels,
const int height, const int width, const int kernel_h, const int kernel_w,
const int pad_h, const int pad_w, const int stride_h, const int stride_w, float *col)
{
int height_col = (height + 2 * pad_h - kernel_h) / stride_h + 1;
int width_col = (width + 2 * pad_w - kernel_w) / stride_w + 1;
int channels_col = channels * kernel_h * kernel_w;
for (int c=0; c<channels_col; c++) {
int w_offset = c % kernel_w;
int h_offset = (c / kernel_w) % kernel_h;
int c_im = c / kernel_h / kernel_w;
for (int h=0; h<height_col; h++) {
for (int w=0; w<width_col; w++) {
int h_pad = h * stride_h - pad_h + h_offset;
int w_pad = w * stride_w - pad_w + w_offset;
if (h_pad >= 0 && h_pad < height && w_pad >= 0 && w_pad < width)
col[(c * height_col + h) * width_col + w] =
im[(c_im * height + h_pad) * width + w_pad];
else
col[(c * height_col + h) * width_col + w] = 0;
}
}
}
}
float workspace[256*256*128*64];
static inline void gl_convolution_LReLU(float *inputs, int ich, int w, int h, float *weights, int k, int pad, int stride, float *outputs, int ch, float *bias)
{
// im2col(pix, 3, h, w, 4, 4, 2, 2, 1, 1, workspace);
im2col(inputs, ich, h, w, k, k, pad, pad, stride, stride, workspace);
int hcol = (h + 2 * pad - k) / stride + 1;
int wcol = (w + 2 * pad - k) / stride + 1;
// gemm('N', 'N', ch, wcol*hcol*batch, k*k*ich, magic_kernel, workspace, pix);
// https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/
int M, N, K;
float param[16];
param[0] = M = ch; // M
param[1] = N = wcol*hcol /* *batch */;// N
param[2] = K = k*k*ich; // K
coWrite(0, M*K*sizeof(float), weights); // a
coWrite(1, K*N*sizeof(float), workspace); // b
coRun(sgemm_program[GEMM1_SRNN], M/8+1, N/8+1, 1, param);
coRead(2, M*N*sizeof(float), outputs); // c
float *p = outputs;
for (int i=0; i<ch; i++) {
for (int n=0; n<wcol*hcol; n++) {
*p += bias[i];
*p = *p>0 ? (*p) : (*p)*0.1;
p++;
}
}
}
#endif