forked from Zumbalamambo/tf-openpose
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_directory.py
57 lines (46 loc) · 2 KB
/
run_directory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import argparse
import logging
import time
import glob
import ast
import os
import dill
import common
import cv2
import numpy as np
from estimator import TfPoseEstimator
from networks import get_graph_path, model_wh
from lifting.prob_model import Prob3dPose
from lifting.draw import plot_pose
logger = logging.getLogger('TfPoseEstimator')
logger.setLevel(logging.DEBUG)
ch = logging.StreamHandler()
ch.setLevel(logging.DEBUG)
formatter = logging.Formatter('[%(asctime)s] [%(name)s] [%(levelname)s] %(message)s')
ch.setFormatter(formatter)
logger.addHandler(ch)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='tf-pose-estimation run by folder')
parser.add_argument('--folder', type=str, default='./images/')
parser.add_argument('--resolution', type=str, default='432x368', help='network input resolution. default=432x368')
parser.add_argument('--model', type=str, default='mobilenet_thin', help='cmu / mobilenet_thin')
parser.add_argument('--scales', type=str, default='[None]', help='for multiple scales, eg. [1.0, (1.1, 0.05)]')
args = parser.parse_args()
scales = ast.literal_eval(args.scales)
w, h = model_wh(args.resolution)
e = TfPoseEstimator(get_graph_path(args.model), target_size=(w, h))
files_grabbed = glob.glob(os.path.join(args.folder, '*.jpg'))
all_humans = dict()
for i, file in enumerate(files_grabbed):
# estimate human poses from a single image !
image = common.read_imgfile(file, None, None)
t = time.time()
humans = e.inference(image, scales=scales)
elapsed = time.time() - t
logger.info('inference image #%d: %s in %.4f seconds.' % (i, file, elapsed))
image = TfPoseEstimator.draw_humans(image, humans, imgcopy=False)
cv2.imshow('tf-pose-estimation result', image)
cv2.waitKey(5)
all_humans[file.replace(args.folder, '')] = humans
with open(os.path.join(args.folder, 'pose.dil'), 'wb') as f:
dill.dump(all_humans, f, protocol=dill.HIGHEST_PROTOCOL)