-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathDataset.py
155 lines (124 loc) · 7.29 KB
/
Dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import tensorflow as tf
from IMLib.utils import *
import itertools
ATT_ID = {'5_o_Clock_Shadow': 0, 'Arched_Eyebrows': 1, 'Attractive': 2,
'Bags_Under_Eyes': 3, 'Bald': 4, 'Bangs': 5, 'Big_Lips': 6,
'Big_Nose': 7, 'Black_Hair': 8, 'Blond_Hair': 9, 'Blurry': 10,
'Brown_Hair': 11, 'Bushy_Eyebrows': 12, 'Chubby': 13,
'Double_Chin': 14, 'Eyeglasses': 15, 'Goatee': 16,
'Gray_Hair': 17, 'Heavy_Makeup': 18, 'High_Cheekbones': 19,
'Male': 20, 'Mouth_Slightly_Open': 21, 'Mustache': 22,
'Narrow_Eyes': 23, 'No_Beard': 24, 'Oval_Face': 25,
'Pale_Skin': 26, 'Pointy_Nose': 27, 'Receding_Hairline': 28,
'Rosy_Cheeks': 29, 'Sideburns': 30, 'Smiling': 31,
'Straight_Hair': 32, 'Wavy_Hair': 33, 'Wearing_Earrings': 34,
'Wearing_Hat': 35, 'Wearing_Lipstick': 36,
'Wearing_Necklace': 37, 'Wearing_Necktie': 38, 'Young': 39}
class CelebA(object):
def __init__(self, config):
super(CelebA, self).__init__()
self.data_dir = config.data_dir
self.label_dir = config.label_dir
self.dataset_name = 'CelebA'
self.height, self.width= config.img_size, config.img_size
self.channel = config.output_nc
self.capacity = config.capacity
self.batch_size = config.batch_size
self.num_threads = config.num_threads
self.chosen_att_names = config.chosen_att_names
self.to_balance_att_names = config.to_balance_att_names
self.img_names = np.genfromtxt(self.label_dir, dtype=str, usecols=0)
self.img_paths = np.array([os.path.join(self.data_dir, img_name) for img_name in self.img_names[2:]])
self.labels = self.read_txt(self.label_dir) #np.genfromtxt(self.label_dir, dtype=str, usecols=range(0, 41), delimiter='[/\s:]+')
assert len(self.labels) == len(self.img_paths)
self.train_images_list = self.img_paths[0:200599, ...]
self.test_images_list = self.img_paths[200599:, ...]
self.train_label = self.labels[0:200599, ...]
self.test_label = self.labels[200599:, ...]
pos = list(filter(lambda x:x==1, self.train_label[:, 31]))
neg = list(filter(lambda x:x==0, self.train_label[:, 31]))
print("pos", len(pos), "neg", len(neg))
self.train_images_list, self.train_label = \
self.balance(self.train_images_list, self.train_label, self.to_balance_att_names, balance_ratios=[0.55]*len(self.to_balance_att_names))
pos = list(filter(lambda x:x==1, self.train_label[:, 31]))
neg = list(filter(lambda x:x==0, self.train_label[:, 31]))
print("pos", len(pos), "neg", len(neg))
self.train_label = self.train_label[:, np.array([ATT_ID[att_name] for att_name in self.chosen_att_names])]
self.test_label = self.test_label[:, np.array([ATT_ID[att_name] for att_name in self.chosen_att_names])]
def read_images(self, input_queue):
content = tf.read_file(input_queue)
img = tf.image.decode_jpeg(content, channels=self.channel)
img = tf.cast(img, tf.float32)
img = tf.image.random_flip_left_right(img)
img = tf.image.crop_to_bounding_box(img, 20, 0, 178, 178)
img = tf.image.resize_images(img, (self.height, self.width))
return img / 127.5 - 1.0
def read_txt(self, txt_path):
p = open(txt_path, 'r')
next(p)
next(p)
lines = p.readlines()
labels = []
for i, line in enumerate(lines):
line = line.replace('\n', '')
list = line.split()
label = [(int(item) + 1)/2 for item in list[1:]]
labels.append(label)
return np.array(labels)
def input(self):
train_images = tf.convert_to_tensor(self.train_images_list, dtype=tf.string)
train_label = tf.convert_to_tensor(self.train_label, dtype=tf.int32)
train_queue = tf.train.slice_input_producer([train_images, train_label], shuffle=True)
train_label_queue = train_queue[1]
train_images_queue = self.read_images(input_queue=train_queue[0])
test_images = tf.convert_to_tensor(self.test_images_list, dtype=tf.string)
test_label = tf.convert_to_tensor(self.test_label, dtype=tf.int32)
test_queue = tf.train.slice_input_producer([test_images, test_label], shuffle=False)
test_label_queue = test_queue[1]
test_images_queue = self.read_images(input_queue=test_queue[0])
batch_image1, batch_label1 = tf.train.shuffle_batch([train_images_queue, train_label_queue],
batch_size=self.batch_size,
capacity=self.capacity,
num_threads=self.num_threads,
min_after_dequeue=10)
batch_image2, batch_label2 = tf.train.batch([test_images_queue, test_label_queue],
batch_size=self.batch_size,
capacity=50,
num_threads=1)
return batch_image1, batch_label1, batch_image2, batch_label2
def balance(self, img_paths, labels, to_balance_att_names, balance_ratios):
assert len(to_balance_att_names) == len(balance_ratios)
if to_balance_att_names == []:
return img_paths, labels
print(balance_ratios)
to_balance_att_name = to_balance_att_names[0]
balance_ratio = balance_ratios[0]
labels_to_balance = labels[:, ATT_ID[to_balance_att_name]]
idx_0 = np.argwhere(labels_to_balance == 0).squeeze()
idx_1 = np.argwhere(labels_to_balance == 1).squeeze()
if balance_ratio == 'only_neg':
img_paths = img_paths[idx_0]
labels = labels[idx_0]
img_paths, labels = self.balance(img_paths, labels, to_balance_att_names[1:], balance_ratios[1:])
elif balance_ratio == 'only_pos':
img_paths = img_paths[idx_1]
labels = labels[idx_1]
img_paths, labels = self.balance(img_paths, labels, to_balance_att_names[1:], balance_ratios[1:])
else:
if len(idx_0) < len(idx_1) and len(idx_0) / len(idx_1) < balance_ratio and len(idx_0) != 0:
idx_0, idx_1 = zip(*zip(itertools.cycle(idx_0), idx_1))
idx_0, idx_1 = np.random.permutation(idx_0), np.array(idx_1)
idx_0 = idx_0[:int(np.ceil(len(idx_1) * balance_ratio))]
elif len(idx_1) < len(idx_0) and len(idx_1) / len(idx_0) < balance_ratio and len(idx_1) != 0:
idx_0, idx_1 = zip(*zip(idx_0, itertools.cycle(idx_1)))
idx_0, idx_1 = np.array(idx_0), np.random.permutation(idx_1)
idx_1 = idx_1[:int(np.ceil(len(idx_0) * balance_ratio))]
img_paths_0 = img_paths[idx_0]
labels_0 = labels[idx_0]
img_paths_1 = img_paths[idx_1]
labels_1 = labels[idx_1]
img_paths_0, labels_0 = self.balance(img_paths_0, labels_0, to_balance_att_names[1:], balance_ratios[1:])
img_paths_1, labels_1 = self.balance(img_paths_1, labels_1, to_balance_att_names[1:], balance_ratios[1:])
img_paths = np.concatenate((img_paths_0, img_paths_1))
labels = np.concatenate((labels_0, labels_1))
return img_paths, labels