Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Issue when running run_generator.py (input depth must be evenly divisible by filter depth: 6 vs 4) #44

Open
vivekbharadhwajsa opened this issue Oct 13, 2021 · 17 comments

Comments

@vivekbharadhwajsa
Copy link

vivekbharadhwajsa commented Oct 13, 2021

Constant issue about (input depth must be evenly divisible by filter depth: 6 vs 4)

`2021-10-13 12:57:27.644988: W tensorflow/core/framework/op_kernel.cc:1692] OP_REQUIRES failed at conv_ops.cc:654 : Invalid argument: input depth must be evenly divisible by filter depth: 6 vs 4
Traceback (most recent call last):
File "/home/sulugodu/.virtualenvs/ma_gan/lib/python3.8/site-packages/tensorflow/python/client/session.py", line 1375, in _do_call
return fn(*args)
File "/home/sulugodu/.virtualenvs/ma_gan/lib/python3.8/site-packages/tensorflow/python/client/session.py", line 1359, in _run_fn
return self._call_tf_sessionrun(options, feed_dict, fetch_list,
File "/home/sulugodu/.virtualenvs/ma_gan/lib/python3.8/site-packages/tensorflow/python/client/session.py", line 1451, in _call_tf_sessionrun
return tf_session.TF_SessionRun_wrapper(self._session, options, feed_dict,
tensorflow.python.framework.errors_impl.InvalidArgumentError: 2 root error(s) found.
(0) Invalid argument: input depth must be evenly divisible by filter depth: 6 vs 4
[[{{node Gs/_Run/Gs/G_synthesis/E_512x512/FromRGB/Conv2D}}]]
[[Gs/_Run/Gs/images_out/_1587]]
(1) Invalid argument: input depth must be evenly divisible by filter depth: 6 vs 4
[[{{node Gs/_Run/Gs/G_synthesis/E_512x512/FromRGB/Conv2D}}]]
0 successful operations.
0 derived errors ignored.

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
File "run_generator.py", line 61, in
apply_predefined()
File "run_generator.py", line 55, in apply_predefined
create_from_images(pkl_path, img, mask)
File "run_generator.py", line 31, in create_from_images
fake = Gs.run(latent, None, real[np.newaxis], mask[np.newaxis], truncation_psi=truncation)[0]
File "/home/sulugodu/ma_gan/MA/Anonymization/co-mod-gan/dnnlib/tflib/network.py", line 445, in run
mb_out = tf.compat.v1.get_default_session().run(out_expr, dict(zip(in_expr, mb_in)))
File "/home/sulugodu/.virtualenvs/ma_gan/lib/python3.8/site-packages/tensorflow/python/client/session.py", line 967, in run
result = self._run(None, fetches, feed_dict, options_ptr,
File "/home/sulugodu/.virtualenvs/ma_gan/lib/python3.8/site-packages/tensorflow/python/client/session.py", line 1190, in _run
results = self._do_run(handle, final_targets, final_fetches,
File "/home/sulugodu/.virtualenvs/ma_gan/lib/python3.8/site-packages/tensorflow/python/client/session.py", line 1368, in _do_run
return self._do_call(_run_fn, feeds, fetches, targets, options,
File "/home/sulugodu/.virtualenvs/ma_gan/lib/python3.8/site-packages/tensorflow/python/client/session.py", line 1394, in _do_call
raise type(e)(node_def, op, message) # pylint: disable=no-value-for-parameter
tensorflow.python.framework.errors_impl.InvalidArgumentError: 2 root error(s) found.
(0) Invalid argument: input depth must be evenly divisible by filter depth: 6 vs 4
[[node Gs/_Run/Gs/G_synthesis/E_512x512/FromRGB/Conv2D (defined at :60) ]]
[[Gs/_Run/Gs/images_out/_1587]]
(1) Invalid argument: input depth must be evenly divisible by filter depth: 6 vs 4
[[node Gs/_Run/Gs/G_synthesis/E_512x512/FromRGB/Conv2D (defined at :60) ]]
0 successful operations.
0 derived errors ignored.

Errors may have originated from an input operation.
Input Source operations connected to node Gs/_Run/Gs/G_synthesis/E_512x512/FromRGB/Conv2D:
Gs/_Run/Gs/G_synthesis/concat (defined at :387)
Gs/_Run/Gs/G_synthesis/E_512x512/FromRGB/mul (defined at :36)

Input Source operations connected to node Gs/_Run/Gs/G_synthesis/E_512x512/FromRGB/Conv2D:
Gs/_Run/Gs/G_synthesis/concat (defined at :387)
Gs/_Run/Gs/G_synthesis/E_512x512/FromRGB/mul (defined at :36)

Original stack trace for 'Gs/_Run/Gs/G_synthesis/E_512x512/FromRGB/Conv2D':
File "run_generator.py", line 61, in
apply_predefined()
File "run_generator.py", line 55, in apply_predefined
create_from_images(pkl_path, img, mask)
File "run_generator.py", line 31, in create_from_images
fake = Gs.run(latent, None, real[np.newaxis], mask[np.newaxis], truncation_psi=truncation)[0]
File "/home/sulugodu/ma_gan/MA/Anonymization/co-mod-gan/dnnlib/tflib/network.py", line 420, in run
out_gpu = net_gpu.get_output_for(*in_gpu, return_as_list=True, **dynamic_kwargs)
File "/home/sulugodu/ma_gan/MA/Anonymization/co-mod-gan/dnnlib/tflib/network.py", line 224, in get_output_for
out_expr = self._build_func(*final_inputs, **build_kwargs)
File "", line 239, in G_main
File "/home/sulugodu/ma_gan/MA/Anonymization/co-mod-gan/dnnlib/tflib/network.py", line 224, in get_output_for
out_expr = self._build_func(*final_inputs, **build_kwargs)
File "", line 391, in G_synthesis_RegionGAN
File "", line 350, in E_fromrgb
File "", line 60, in conv2d_layer
File "/home/sulugodu/.virtualenvs/ma_gan/lib/python3.8/site-packages/tensorflow/python/util/dispatch.py", line 206, in wrapper
return target(*args, **kwargs)
File "/home/sulugodu/.virtualenvs/ma_gan/lib/python3.8/site-packages/tensorflow/python/ops/nn_ops.py", line 2281, in conv2d_v2
return conv2d(input, # pylint: disable=redefined-builtin
File "/home/sulugodu/.virtualenvs/ma_gan/lib/python3.8/site-packages/tensorflow/python/util/dispatch.py", line 206, in wrapper
return target(*args, **kwargs)
File "/home/sulugodu/.virtualenvs/ma_gan/lib/python3.8/site-packages/tensorflow/python/ops/nn_ops.py", line 2388, in conv2d
return gen_nn_ops.conv2d(
File "/home/sulugodu/.virtualenvs/ma_gan/lib/python3.8/site-packages/tensorflow/python/ops/gen_nn_ops.py", line 969, in conv2d
_, _, _op, _outputs = _op_def_library._apply_op_helper(
File "/home/sulugodu/.virtualenvs/ma_gan/lib/python3.8/site-packages/tensorflow/python/framework/op_def_library.py", line 748, in _apply_op_helper
op = g._create_op_internal(op_type_name, inputs, dtypes=None,
File "/home/sulugodu/.virtualenvs/ma_gan/lib/python3.8/site-packages/tensorflow/python/framework/ops.py", line 3561, in _create_op_internal
ret = Operation(
File "/home/sulugodu/.virtualenvs/ma_gan/lib/python3.8/site-packages/tensorflow/python/framework/ops.py", line 2045, in init
self._traceback = tf_stack.extract_stack_for_node(self._c_op) `

@vivekbharadhwajsa
Copy link
Author

vivekbharadhwajsa commented Oct 13, 2021

print((latent.shape, real[np.newaxis].shape, mask[np.newaxis].shape))
gives
((1, 512), (1, 3, 512, 512), (1, 3, 512, 512))
as output

@vivekbharadhwajsa vivekbharadhwajsa changed the title Issue when running run_generator.py Issue when running run_generator.py (input depth must be evenly divisible by filter depth: 6 vs 4) Oct 13, 2021
@vivekbharadhwajsa
Copy link
Author

I tried this with the ffhq-9(512512) and places-2(512512) pre-trained models from your repo. I get the same error all the time.

@zsyzzsoft
Copy link
Owner

Seems that your input image has 6 channels? How did you generate the custom dataset?

@vivekbharadhwajsa
Copy link
Author

I did not train my model. I wanted to run inference with your pre-trained model and my image and mask.

The create_from_images in run_generator.py just takes the real image and mask right? It doesn't take the tfrecord as input.
When I use my custom image and mask (both 512x512) I get this issue of shapes.

@ghost
Copy link

ghost commented Oct 18, 2021

Oh I misunderstood. Can you print out the shape of the mask image after line 11?

@vivekbharadhwajsa
Copy link
Author

print((mask[np.newaxis].shape, mask.shape))
returns
((1, 3, 512, 512), (3, 512, 512))

@zsyzzsoft
Copy link
Owner

Can you provide your mask image? On my side the shape of the mask should always be (512, 512) before newaxis

@vivekbharadhwajsa
Copy link
Author

img
mask

Here are the image and mask samples I use.

@zsyzzsoft
Copy link
Owner

What is your PIL version? You can use 'pip show Pillow'

@vivekbharadhwajsa
Copy link
Author

What is your PIL version? You can use 'pip show Pillow'

It is 8.3.2

@zsyzzsoft
Copy link
Owner

I still cannot reproduce your error... Did you modify the code?

@vivekbharadhwajsa
Copy link
Author

vivekbharadhwajsa commented Oct 19, 2021

I still cannot reproduce your error... Did you modify the code?

Here is my run_generator.py script

import argparse
import numpy as np
import PIL.Image
from numpy.testing._private.utils import import_nose
from dnnlib import tflib
from training import misc
import os
import glob
import cv2
import numpy as np
from dataset_tools.create_from_images import create_from_image
import tensorflow as tf
from tensorflow.keras.preprocessing.image import img_to_array

if not os.path.exists('co-mod-gan_imgs'):
os.mkdir('co-mod-gan_imgs')

def create_from_images(checkpoint, image, mask, truncation=None):
real_img = PIL.Image.open(image).convert('RGB')
real_img = real_img.resize((512, 512))
f_name = image.split('/')[-1]
real_img.save('co-mod-gan_imgs/'+f_name)
real = np.asarray(real_img).transpose([2, 0, 1])
real = misc.adjust_dynamic_range(real, [0, 255], [-1, 1])
mask = np.asarray(mask.transpose([2, 0, 1]), dtype=np.float32)[np.newaxis]
mask = np.squeeze(mask, axis=0)
#mask = np.squeeze(mask, axis=0)
#real = np.squeeze(real, axis=0)
tflib.init_tf()
_, , Gs = misc.load_pkl(checkpoint)
print('loaded network from pkl...')
latent = np.random.randn(1, *Gs.input_shape[1:])
#print((latent.shape, img_to_array(real).shape, img_to_array(mask).shape))
fake = Gs.run(latent, None, tf.convert_to_tensor(real[np.newaxis]), tf.convert_to_tensor(mask[np.newaxis]), truncation_psi=truncation)[0]
fake = misc.adjust_dynamic_range(fake, [-1, 1], [0, 255])
fake = fake.clip(0, 255).astype(np.uint8).transpose([1, 2, 0])
fake = PIL.Image.fromarray(fake)
fake.save('co-mod-gan_imgs/out
'+f_name)

def create_from_image_test(checkpoint, image_dir, mask_dir, truncation=None):
real_img = PIL.Image.open(image_dir).convert('RGB')
real_img = real_img.resize((512, 512))
f_name = image_dir.split('/')[-1]
real_img.save('co-mod-gan_imgs/'+f_name)
tflib.init_tf()
_, , Gs = misc.load_pkl(checkpoint)
print('loaded network from pkl...')
latent = np.random.randn(1, *Gs.input_shape[1:])
#print((latent.shape, real[np.newaxis].shape, mask[np.newaxis].shape))
real = create_from_image('real', image_dir, 512, 3, 8, False, False)
mask = create_from_image('mask', mask_dir, 512, 3, 8, False, False)
fake = Gs.run(latent, None, real, mask, truncation_psi=truncation)[0]
fake = misc.adjust_dynamic_range(fake, [-1, 1], [0, 255])
fake = fake.clip(0, 255).astype(np.uint8).transpose([1, 2, 0])
fake = PIL.Image.fromarray(fake)
fake.save('co-mod-gan_imgs/out
'+f_name)

def main():
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--checkpoint', help='Network checkpoint path', required=True)
parser.add_argument('-i', '--image', help='Original image path', required=True)
parser.add_argument('-m', '--mask', help='Mask path', required=True)
parser.add_argument('-t', '--truncation', help='Truncation psi for the trade-off between quality and diversity. Defaults to 1.', default=None)
args = parser.parse_args()
create_from_images(**vars(args))

def apply_predefined():
pkl_path = '/home/sulugodu/ma_gan/MA/Test/co_mod_gan/co-mod-gan-ffhq-9-025000.pkl'
data_path = '/home/sulugodu/ma_gan/MA/Anonymization/Datasets/faces_bbox/images/test'
imgs = glob.glob(data_path+'/*')[:10]
for i, img in enumerate(imgs):
mask_path = img.replace('Datasets/faces_bbox/images/test', 'u2net_seg_imgs')
mask = PIL.Image.open(mask_path).resize((512, 512))
mask = cv2.bitwise_not(np.array(mask))
mask = cv2.threshold(mask, 0, 255, cv2.THRESH_BINARY)
create_from_images(pkl_path, img, mask[1])
if i%1000 == 0:
print('{} images processed with co-mod-gan...'.format(i))
#for i, img in enumerate(imgs):
# mask_path = img.replace('Datasets/faces_bbox/images/test', 'u2net_seg_imgs')
# create_from_image_test(pkl_path, img, mask_path)
# if i%1000 == 0:
# print('{} images processed with co-mod-gan...'.format(i))

if name == "main":
#main()
apply_predefined()

@zsyzzsoft
Copy link
Owner

I see. You should make the shape of the mask to (1, 512, 512) before Gs.run. In your case you can 'mask = mask[:, 0]' after line 11.

@vivekbharadhwajsa
Copy link
Author

It worked.

Can you provide an example mask image and it's shape as well?

@zsyzzsoft
Copy link
Owner

There is an example mask image in the 'imgs' folder.

@vivekbharadhwajsa
Copy link
Author

vivekbharadhwajsa commented Oct 20, 2021

I tried and it worked. But the results looks very bad. Here are some examples:

Example 1:
Image: 183743
Mask: mask_183743 jpg
Output: out_183743

Example 2:
Image: 199866
Mask: mask_199866 jpg
Output: out_199866

Any suggestions on why the results are bad?

@zsyzzsoft
Copy link
Owner

You did not adjust dynamic range for input images like line 10 in run_generator.py

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants