-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathNetVLAD.py
61 lines (50 loc) · 2.05 KB
/
NetVLAD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import torch
import torch.nn as nn
import torch.nn.functional as F
class NetVLAD(nn.Module):
"""NetVLAD layer implementation"""
def __init__(self, num_clusters=64, dim=128, alpha=100.0,
normalize_input=True):
"""
Args:
num_clusters : int
The number of clusters
dim : int
Dimension of descriptors
alpha : float
Parameter of initialization. Larger value is harder assignment.
normalize_input : bool
If true, descriptor-wise L2 normalization is applied to input.
"""
super(NetVLAD, self).__init__()
self.num_clusters = num_clusters
self.dim = dim
self.alpha = alpha
self.normalize_input = normalize_input
self.conv = nn.Conv2d(dim, num_clusters, kernel_size=(1, 1), bias=True)
self.centroids = nn.Parameter(torch.rand(num_clusters, dim))
self._init_params()
def _init_params(self):
self.conv.weight = nn.Parameter(
(2.0 * self.alpha * self.centroids).unsqueeze(-1).unsqueeze(-1)
)
self.conv.bias = nn.Parameter(
- self.alpha * self.centroids.norm(dim=1)
)
def forward(self, x):
N, C = x.shape[:2]
if self.normalize_input:
x = F.normalize(x, p=2, dim=1) # across descriptor dim
# soft-assignment
soft_assign = self.conv(x).view(N, self.num_clusters, -1)
soft_assign = F.softmax(soft_assign, dim=1)
x_flatten = x.view(N, C, -1)
# calculate residuals to each clusters
residual = x_flatten.expand(self.num_clusters, -1, -1, -1).permute(1, 0, 2, 3) - \
self.centroids.expand(x_flatten.size(-1), -1, -1).permute(1, 2, 0).unsqueeze(0)
residual *= soft_assign.unsqueeze(2)
vlad = residual.sum(dim=-1)
vlad = F.normalize(vlad, p=2, dim=2) # intra-normalization
vlad = vlad.view(x.size(0), -1) # flatten
vlad = F.normalize(vlad, p=2, dim=1) # L2 normalize
return vlad