Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Furthest, bottom, outside and outside_std methods #19

Open
wants to merge 3 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 20 additions & 0 deletions bhv/abstract.py
Original file line number Diff line number Diff line change
Expand Up @@ -90,17 +90,37 @@ def hamming(self, other: Self) -> int:
return (self ^ other).active()

def closest(self, vs: list[Self]) -> int:
"""Return index of the vector that is closest in hamming distance to self"""
return min(range(len(vs)), key=lambda i: self.hamming(vs[i]))

def furthest(self, vs: list[Self]) -> int:
"""Return index of the vector that is furthest in hamming distance to self"""
return max(range(len(vs)), key=lambda i: self.hamming(vs[i]))

def top(self, vs: list[Self], k: int) -> list[int]:
"""Return the indices of the k vectors that have the smallest hamming distance from self"""
return list(sorted(range(len(vs)), key=lambda i: self.hamming(vs[i])))[:k]

def bottom(self, vs: list[Self], k: int) -> list[int]:
"""Return the indices of the k vectors that have the biggest hamming distance from self"""
return list(sorted(range(len(vs)), key=lambda i: self.hamming(vs[i])))[(len(vs) - k):]

def within(self, vs: list[Self], d: int) -> list[int]:
"""Return the indices of all the vectors with maximum hamming distance d to self (including distance d)"""
return list(filter(lambda i: self.hamming(vs[i]) <= d, range(len(vs))))

def outside(self, vs: list[Self], d: int) -> list[int]:
"""Return the indices of all the vectors with minimum hamming distance d to self (excluding distance d)"""
return list(filter(lambda i: self.hamming(vs[i]) > d, range(len(vs))))

def within_std(self, vs: list[Self], d: float, relative: bool = False) -> list[int]:
"""Return the indices of all vectors that are less than d standard deviations away from self (including d)"""
return self.within(vs, int(DIMENSION*(self.std_to_frac(d + self.EXPECTED_RAND_APART*relative))))

def outside_std(self, vs: list[Self], d: float, relative: bool = False) -> list[int]:
"""Return the indices of all vectors that are more than d standard deviations away from self (including d)"""
return self.outside(vs, int(DIMENSION*(self.std_to_frac(d + self.EXPECTED_RAND_APART*relative))))

def distribution(self, vs: list[Self], metric=lambda x, y: x.std_apart(y), softmax: bool = False, base: int = e):
ds = [metric(self, v) for v in vs]
if softmax:
Expand Down
58 changes: 58 additions & 0 deletions tests/abstract.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,58 @@
import unittest

from bhv.vanilla import VanillaBHV as BHV, DIMENSION


class BaseBHVMethods(unittest.TestCase):
def test_closest_furthest(self):
a, b, c, d = BHV.nrand(4)

self.assertEqual(0, a.closest([a, b, c, d]))

self.assertEqual(1, a.furthest([a, b]))
self.assertEqual(1, a.furthest([BHV.majority([a, b, c]), BHV.majority([a, b, c, d])]))

def test_top_bottom(self):
a, b, c, d = BHV.nrand(4)

self.assertEqual([0, 1], a.top([a, BHV.majority([a, b, c]), BHV.majority([a, b, c, d])], 2))
self.assertEqual([1, 2], a.bottom([a, BHV.majority([a, b, c]), BHV.majority([a, b, c, d])], 2))

def test_within_outside(self):
a, b, c, d = BHV.nrand(4)

self.assertEqual([0], a.within([a, b], 0))
self.assertEqual([0, 1], a.within([a, b], DIMENSION))
self.assertEqual([0], a.within([a ^ BHV.level(1)], DIMENSION))
self.assertEqual([], a.within([a ^ BHV.level(1)], DIMENSION - 1))
self.assertEqual([], a.within([a ^ BHV.level(.5)], DIMENSION/2 - 1))
self.assertEqual([0], a.within([a ^ BHV.level(.5)], DIMENSION/2))
self.assertEqual([0, 1], a.within([a, a ^ BHV.level(.001), a ^ BHV.level(.1), b], 100))

self.assertEqual([], a.outside([a], 0))
self.assertEqual([], a.outside([b], DIMENSION))
self.assertEqual([], a.outside([a ^ BHV.level(1)], DIMENSION))
self.assertEqual([0], a.outside([a ^ BHV.level(1)], DIMENSION - 1))
self.assertEqual([0], a.outside([a ^ BHV.level(.5)], DIMENSION / 2 - 1))
self.assertEqual([], a.outside([a ^ BHV.level(.5)], DIMENSION / 2))
self.assertEqual([2, 3], a.outside([a, a ^ BHV.level(.001), a ^ BHV.level(.1), b], 100))

vs = BHV.nrand(20)
for w in vs:
for a in range(0, DIMENSION, round(DIMENSION/100)):
self.assertSetEqual(set(w.outside(vs, a)), set(range(len(vs))) - set(w.within(vs, a)))

def test_within_outside_std(self):
a, b, c, d = BHV.nrand(4)

self.assertEqual([0, 1], a.within_std([a, b], a.std_apart(b)))
self.assertEqual([], a.outside_std([a, b], a.std_apart(b)))

vs = BHV.nrand(20)
for w in vs:
for a in range(100):
self.assertSetEqual(set(w.outside_std(vs, a)), set(range(len(vs))) - set(w.within_std(vs, a)))


if __name__ == '__main__':
unittest.main()