-
Notifications
You must be signed in to change notification settings - Fork 0
Database
The Database
class is used to instantiate a SQLAlchemy connection to
a database.
from sqlalchemy_tools import Database
db = Database(dialect+driver://username:password@host:port/database)
SqlAlchemyTools comes with a PyMySQL
and PG8000
as drivers for MySQL
and PostgreSQL respectively, because they are in pure Python. But you can use
other drivers for better performance. SQLite
is already built in Python.
SQLite:
from sqlalchemy_tools import Database
db = Database("sqlite://") # in memory
# or
db = Database("sqlite:///foo.db") # DB file
PostgreSql:
from sqlalchemy_tools import Database
db = Database("postgresql+pg8000://user:password@host:port/dbname")
PyMySQL:
from sqlalchemy_tools import Database
db = Database("mysql+pymysql://user:password@host:port/dbname")
SqlAlchemyTools also provides access to all the SQLAlchemy
functions from the sqlalchemy
and sqlalchemy.orm
modules.
So you can declare models like the following examples:
To start, create a model class and extends it with db.Model
# mymodel.py
from sqlalchemy_tools import Database
db = Database("sqlite://")
class MyModel(db.Model):
name = db.Column(db.String(25))
is_live = db.Column(db.Boolean, default=False)
# Put at the end of the model module to auto create all models
db.create_all()
- It does an automatic table naming (if no table name is already defined using the
__tablename__
property) by using the class name. So, for example, aUser
model gets a table nameduser
,TodoList
becomestodo_list
The name will not be plurialized.
db.Model extends your model with helpers that turn your model into an active record like model. But underneath, it still uses the db.session
db.Model
by default assumes that your primary key is id
, but it can be overwritten.
class MyExistingModel(db.BaseModel):
__tablename__ = "my_old_table"
__primary_key__ = "my_pk_id"
my_pk_id = db.Column(db.Integer, primary_key=True)
name = db.Column(db.String)
...
BaseModel
The default db.Model
uses from sqlalchemy_tools import BaseModel
. It can be changed by using a different base_cls
on initialising the database
db = Database('sqlite://', base_cls=MyBaseModel)
The BaseModel __repr__
is formatted as:
ClassName(attr_name=attr_value, ...)
BaseQuery
The default model query is from sqlalchemy_tools import BaseQuery
. It can be changed by using a different query_cls
on initialising the database
db = Database('sqlite://', query_cls=MyBaseQuery)
To start querying the DB and returns a db.session.query
object to filter or apply more conditions.
for user in User.query:
print(user.login)
To use with filter...
all = User
.query
.order_by(User.updated_at.desc())
.filter(User.location == "Charlotte")
Get one record by id.
id = 1234
user = User.get(id)
print(user.id)
print(user.login)
To create/insert new record. Same as init, but just a shortcut to it.
record = User.create(login='abc', passw_hash='hash', profile_id=123)
print (record.login) # -> abc
or you can use the init with save()
record = User(login='abc', passw_hash='hash', profile_id=123).save()
print (record.login) # -> abc
or
record = User(login='abc', passw_hash='hash', profile_id=123)
db.add(record)
db.commit()
print (record.login) # -> abc
Update an existing record
record = User.get(124)
record.update(login='new_login')
print (record.login) # -> new_login
To delete a record completely
record = User.get(124)
record.delete()
A shortcut to session.add
+ session.commit()
record = User.get(124)
record.login = "Another one"
record.save()
Returns the model instance as a dictionary
record = User.get(1234)
record_dict = record.to_dict()
Returns the model instance as a JSON formatted string
record = User.get(1234)
record_json = record.to_json()
Check whether the model instance will pass the database validation.
A nested session is created and the object is committed, if the commit is successful then the session is rolledback and the method returns True, else the session is rollback and the method returns False
user = User(login='abc', passw_hash='hash', profile_id=123)
user.is_valid()
Insert a list of dictionarys to the database
User.bulk_insert([{'name': 'Andy'},
{'name': "Sam"}])
Insert a Pandas dataframe into the database. Faster than bulk_insert
if you already have you data in DataFrame format
df = pd.DataFrame()
... # fill df with data. Set ForeignKeys as the appropriate id, ignore relationship fields
User.insert_dataframe(df)
This callback can be used to initialize an application for the use with this database setup. In a web application or a multithreaded environment, never use a database without initialize it first, or connections will leak.
Gives access to the engine
Proxy for db.Model.metadata
Proxy for db.session.query
Proxy for db.session.add
Proxy for db.session.flush
Proxy for db.session.commit
Proxy for db.session.rollback
Creates all tables
Drops all tables
Reflects tables from the database
Converts a query into a Pandas DataFrame
query = User.query
df = db.get_dataframe(query)
# or
df = db.get_dataframe(User.query.filter(User.name=='Dave'))
For convenience, some method chaining are available
user = User(name="Mardix", location="Charlotte").save()
User.get(12345).update(location="Atlanta")
class Product(db.Model):
name = db.Column(db.String(250))
price = db.Column(db.Numeric)
price_label = db.func.sum(Product.price).label('price')
results = Product.query.filter(price_label)
In a web application you need to call db.session.remove()
after each response, and db.session.rollback()
if an error occurs. However, if you are using Flask or other framework that uses the after_request
and on_exception
decorators, these bindings it is done automatically.
For example using Flask, you can do:
app = Flask(__name__)
db = Database('sqlite://', app=app)
or
db = Database()
app = Flask(__name__)
db.init_app(app)
app = Flask(__name__)
db1 = Database(URI1, app)
db2 = Database(URI2, app)
db = Database(URI1)
app1 = Flask(__name__)
app2 = Flask(__name__)
db.init_app(app1)
db.init_app(app2)
All the results can be easily paginated
users = User.query.paginate(page=2, per_page=20)
print(list(users)) # [User(21), User(22), User(23), ... , User(40)]
The paginator object it's an iterable that returns only the results for that page, so you use it in your templates in the same way than the original result:
{% for item in paginated_items %}
<li>{{ item.name }}</li>
{% endfor %}
Rendering the pages
Below your results is common that you want it to render the list of pages.
The paginator.pages
property is an iterator that returns the page numbers, but sometimes not all of them: if there are more than 11 pages, the result will be one of these, depending of what is the current page:
Skipped page numbers are represented as None
.
How many items are displayed can be controlled calling paginator.iter_pages
instead.
This is one way how you could render such a pagination in your templates:
{% macro pagination(paginator, endpoint=None, class_='pagination') %}
{% if not endpoint %}
{% set endpoint = request.endpoint %}
{% endif %}
{% if "page" in kwargs %}
{% do kwargs.pop("page") %}
{% endif %}
<nav>
<ul class="{{ class_ }}">
{%- if paginator.has_prev %}
<li><a href="{{ url_for(endpoint, page=paginator.prev_page_number, **kwargs) }}"
rel="me prev"><span aria-hidden="true">«</span></a></li>
{% else %}
<li class="disabled"><span><span aria-hidden="true">«</span></span></li>
{%- endif %}
{%- for page in paginator.pages %}
{% if page %}
{% if page != paginator.page %}
<li><a href="{{ url_for(endpoint, page=page, **kwargs) }}"
rel="me">{{ page }}</a></li>
{% else %}
<li class="active"><span>{{ page }}</span></li>
{% endif %}
{% else %}
<li><span class=ellipsis>…</span></li>
{% endif %}
{%- endfor %}
{%- if paginator.has_next %}
<li><a href="{{ url_for(endpoint, page=paginator.next_page_number, **kwargs) }}"
rel="me next">»</a></li>
{% else %}
<li class="disabled"><span aria-hidden="true">»</span></li>
{%- endif %}
</ul>
</nav>
{% endmacro %}