forked from gridap/Gridap.jl
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'master' of github.com:gridap/Gridap.jl into moment-base…
…d-reffes
- Loading branch information
Showing
24 changed files
with
5,251 additions
and
157 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,7 +1,7 @@ | ||
name = "Gridap" | ||
uuid = "56d4f2e9-7ea1-5844-9cf6-b9c51ca7ce8e" | ||
authors = ["Santiago Badia <[email protected]>", "Francesc Verdugo <[email protected]>", "Alberto F. Martin <[email protected]>"] | ||
version = "0.18.7" | ||
version = "0.18.8" | ||
|
||
[deps] | ||
AbstractTrees = "1520ce14-60c1-5f80-bbc7-55ef81b5835c" | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -12,3 +12,4 @@ end | |
const SUITE = BenchmarkGroup() | ||
|
||
@include_bm SUITE "bm_assembly" | ||
@include_bm SUITE "bm_monomial_basis" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,190 @@ | ||
module bm_monomial_basis | ||
|
||
using PkgBenchmark, BenchmarkTools | ||
using Gridap | ||
using Gridap.Polynomials | ||
using Gridap.TensorValues | ||
using StaticArrays | ||
|
||
################################################ | ||
# src/Polynomials/MonomialBasis.jl: _set_value_! | ||
################################################ | ||
|
||
gradient_type = Gridap.Fields.gradient_type | ||
|
||
_set_value! = Gridap.Polynomials._set_value! | ||
|
||
function set_value_driver(f,T,D,x,n) | ||
k = 1 | ||
s = one(T) | ||
for i in 1:n | ||
k = f(x,s,k) | ||
end | ||
end | ||
|
||
function set_value_benchmarkable(D, T, V, n) | ||
C = num_indep_components(V) | ||
x = zeros(V,n*C) | ||
return @benchmarkable set_value_driver($_set_value!,$T,$D,$x,$n) | ||
end | ||
|
||
################################################## | ||
# src/Polynomials/ModalC0Bases.jl: _set_value_mc0! | ||
################################################## | ||
|
||
_set_value_mc0! = Gridap.Polynomials._set_value_mc0! | ||
|
||
function set_value_mc0_driver(f,T,D,x,n) | ||
k = 1 | ||
s = one(T) | ||
for i in 1:n | ||
k = f(x,s,k,2) | ||
end | ||
end | ||
|
||
function set_value_mc0_benchmarkable(D, T, V, n) | ||
C = num_indep_components(V) | ||
x = zeros(V,2*n*C) | ||
return @benchmarkable set_value_mc0_driver($_set_value_mc0!,$T,$D,$x,$n) | ||
end | ||
|
||
################################################### | ||
# src/Polynomials/MonomialBasis.jl: _set_gradient! | ||
################################################### | ||
|
||
_set_gradient! = Gridap.Polynomials. _set_gradient! | ||
|
||
function set_gradient_driver(f,T,D,V,x,n) | ||
k = 1 | ||
s = VectorValue{D,T}(ntuple(_->one(T),D)) | ||
for i in 1:n | ||
k = f(x,s,k,V) | ||
end | ||
end | ||
|
||
function set_gradient_benchmarkable(D, T, V, n) | ||
C = num_indep_components(V) | ||
G = gradient_type(V, zero(Point{D,T})) | ||
x = zeros(G,n*C); | ||
return @benchmarkable set_gradient_driver($_set_gradient!,$T,$D,$V,$x,$n) | ||
end | ||
|
||
##################################################### | ||
# src/Polynomials/ModalC0Bases.jl: _set_gradient_mc0! | ||
##################################################### | ||
|
||
_set_gradient_mc0! = Gridap.Polynomials. _set_gradient_mc0! | ||
|
||
function set_gradient_mc0_driver(f,T,D,V,x,n) | ||
k = 1 | ||
s = VectorValue{D,T}(ntuple(_->one(T),D)) | ||
for i in 1:n | ||
k = f(x,s,k,1,V) | ||
end | ||
end | ||
|
||
function set_gradient_mc0_benchmarkable(D, T, V, n) | ||
C = num_indep_components(V) | ||
G = gradient_type(V, zero(Point{D,T})) | ||
x = zeros(G,n*C); | ||
return @benchmarkable set_gradient_mc0_driver($_set_gradient_mc0!,$T,$D,$V,$x,$n) | ||
end | ||
|
||
################################################# | ||
# src/Polynomials/MonomialBasis.jl: _evaluate_1d! | ||
################################################# | ||
|
||
_evaluate_1d! = Gridap.Polynomials._evaluate_1d! | ||
|
||
function evaluate_1d_driver(f,order,D,v,x_vec) | ||
for x in x_vec | ||
f(v,x,order,D) | ||
end | ||
end | ||
|
||
function evaluate_1d_benchmarkable(D, T, V, n) | ||
n = Integer(n/50) | ||
order = num_indep_components(V) | ||
v = zeros(D,order+1); | ||
x = rand(MVector{n,T}) | ||
return @benchmarkable evaluate_1d_driver($_evaluate_1d!,$order,$D,$v,$x) | ||
end | ||
|
||
################################################ | ||
# src/Polynomials/MonomialBasis.jl:_gradient_1d! | ||
################################################ | ||
|
||
_gradient_1d! = Gridap.Polynomials._gradient_1d! | ||
|
||
function gradient_1d_driver(f,order,D,v,x_vec) | ||
for x in x_vec | ||
f(v,x,order,D) | ||
end | ||
end | ||
|
||
function gradient_1d_benchmarkable(D, T, V, n) | ||
n = Integer(n/10) | ||
order = num_indep_components(V) | ||
v = zeros(D,order+1); | ||
x = rand(MVector{n,T}) | ||
return @benchmarkable gradient_1d_driver($_gradient_1d!,$order,$D,$v,$x) | ||
end | ||
|
||
################################################ | ||
# src/Polynomials/MonomialBasis.jl:_hessian_1d! | ||
################################################ | ||
|
||
_hessian_1d! = Gridap.Polynomials._hessian_1d! | ||
|
||
function hessian_1d_driver(f,order,D,v,x_vec) | ||
for x in x_vec | ||
f(v,x,order,D) | ||
end | ||
end | ||
|
||
function hessian_1d_benchmarkable(D, T, V, n) | ||
n = Integer(n/10) | ||
order = num_indep_components(V) | ||
v = zeros(D,order+1); | ||
x = rand(MVector{n,T}) | ||
return @benchmarkable hessian_1d_driver($_hessian_1d!,$order,$D,$v,$x) | ||
end | ||
|
||
##################### | ||
# benchmarkable suite | ||
##################### | ||
|
||
const SUITE = BenchmarkGroup() | ||
|
||
const benchmarkables = ( | ||
set_value_benchmarkable, | ||
set_value_mc0_benchmarkable, | ||
set_gradient_benchmarkable, | ||
set_gradient_mc0_benchmarkable, | ||
evaluate_1d_benchmarkable, | ||
gradient_1d_benchmarkable, | ||
hessian_1d_benchmarkable | ||
) | ||
|
||
const dims=(1, 2, 3, 5, 8) | ||
const n = 3000 | ||
const T = Float64 | ||
|
||
for benchable in benchmarkables | ||
for D in dims | ||
TV = [ | ||
VectorValue{D,T}, | ||
TensorValue{D,D,T,D*D}, | ||
SymTensorValue{D,T,Integer(D*(D+1)/2)}, | ||
SymTracelessTensorValue{D,T,Integer(D*(D+1)/2)} | ||
] | ||
|
||
for V in TV | ||
if V == SymTracelessTensorValue{1,T,1} continue end # no dofs | ||
name = "monomial_basis_$(D)D_$(V)_$(benchable)" | ||
SUITE[name] = benchable(D, T, V, n) | ||
end | ||
end | ||
end | ||
|
||
end # module |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.