forked from gridap/Gridap.jl
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'master' of github.com:gridap/Gridap.jl into moment-base…
…d-reffes
- Loading branch information
Showing
19 changed files
with
4,888 additions
and
126 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,7 +1,7 @@ | ||
name = "Gridap" | ||
uuid = "56d4f2e9-7ea1-5844-9cf6-b9c51ca7ce8e" | ||
authors = ["Santiago Badia <[email protected]>", "Francesc Verdugo <[email protected]>", "Alberto F. Martin <[email protected]>"] | ||
version = "0.18.7" | ||
version = "0.18.8" | ||
|
||
[deps] | ||
AbstractTrees = "1520ce14-60c1-5f80-bbc7-55ef81b5835c" | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -12,3 +12,4 @@ end | |
const SUITE = BenchmarkGroup() | ||
|
||
@include_bm SUITE "bm_assembly" | ||
@include_bm SUITE "bm_monomial_basis" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,190 @@ | ||
module bm_monomial_basis | ||
|
||
using PkgBenchmark, BenchmarkTools | ||
using Gridap | ||
using Gridap.Polynomials | ||
using Gridap.TensorValues | ||
using StaticArrays | ||
|
||
################################################ | ||
# src/Polynomials/MonomialBasis.jl: _set_value_! | ||
################################################ | ||
|
||
gradient_type = Gridap.Fields.gradient_type | ||
|
||
_set_value! = Gridap.Polynomials._set_value! | ||
|
||
function set_value_driver(f,T,D,x,n) | ||
k = 1 | ||
s = one(T) | ||
for i in 1:n | ||
k = f(x,s,k) | ||
end | ||
end | ||
|
||
function set_value_benchmarkable(D, T, V, n) | ||
C = num_indep_components(V) | ||
x = zeros(V,n*C) | ||
return @benchmarkable set_value_driver($_set_value!,$T,$D,$x,$n) | ||
end | ||
|
||
################################################## | ||
# src/Polynomials/ModalC0Bases.jl: _set_value_mc0! | ||
################################################## | ||
|
||
_set_value_mc0! = Gridap.Polynomials._set_value_mc0! | ||
|
||
function set_value_mc0_driver(f,T,D,x,n) | ||
k = 1 | ||
s = one(T) | ||
for i in 1:n | ||
k = f(x,s,k,2) | ||
end | ||
end | ||
|
||
function set_value_mc0_benchmarkable(D, T, V, n) | ||
C = num_indep_components(V) | ||
x = zeros(V,2*n*C) | ||
return @benchmarkable set_value_mc0_driver($_set_value_mc0!,$T,$D,$x,$n) | ||
end | ||
|
||
################################################### | ||
# src/Polynomials/MonomialBasis.jl: _set_gradient! | ||
################################################### | ||
|
||
_set_gradient! = Gridap.Polynomials. _set_gradient! | ||
|
||
function set_gradient_driver(f,T,D,V,x,n) | ||
k = 1 | ||
s = VectorValue{D,T}(ntuple(_->one(T),D)) | ||
for i in 1:n | ||
k = f(x,s,k,V) | ||
end | ||
end | ||
|
||
function set_gradient_benchmarkable(D, T, V, n) | ||
C = num_indep_components(V) | ||
G = gradient_type(V, zero(Point{D,T})) | ||
x = zeros(G,n*C); | ||
return @benchmarkable set_gradient_driver($_set_gradient!,$T,$D,$V,$x,$n) | ||
end | ||
|
||
##################################################### | ||
# src/Polynomials/ModalC0Bases.jl: _set_gradient_mc0! | ||
##################################################### | ||
|
||
_set_gradient_mc0! = Gridap.Polynomials. _set_gradient_mc0! | ||
|
||
function set_gradient_mc0_driver(f,T,D,V,x,n) | ||
k = 1 | ||
s = VectorValue{D,T}(ntuple(_->one(T),D)) | ||
for i in 1:n | ||
k = f(x,s,k,1,V) | ||
end | ||
end | ||
|
||
function set_gradient_mc0_benchmarkable(D, T, V, n) | ||
C = num_indep_components(V) | ||
G = gradient_type(V, zero(Point{D,T})) | ||
x = zeros(G,n*C); | ||
return @benchmarkable set_gradient_mc0_driver($_set_gradient_mc0!,$T,$D,$V,$x,$n) | ||
end | ||
|
||
################################################# | ||
# src/Polynomials/MonomialBasis.jl: _evaluate_1d! | ||
################################################# | ||
|
||
_evaluate_1d! = Gridap.Polynomials._evaluate_1d! | ||
|
||
function evaluate_1d_driver(f,order,D,v,x_vec) | ||
for x in x_vec | ||
f(v,x,order,D) | ||
end | ||
end | ||
|
||
function evaluate_1d_benchmarkable(D, T, V, n) | ||
n = Integer(n/50) | ||
order = num_indep_components(V) | ||
v = zeros(D,order+1); | ||
x = rand(MVector{n,T}) | ||
return @benchmarkable evaluate_1d_driver($_evaluate_1d!,$order,$D,$v,$x) | ||
end | ||
|
||
################################################ | ||
# src/Polynomials/MonomialBasis.jl:_gradient_1d! | ||
################################################ | ||
|
||
_gradient_1d! = Gridap.Polynomials._gradient_1d! | ||
|
||
function gradient_1d_driver(f,order,D,v,x_vec) | ||
for x in x_vec | ||
f(v,x,order,D) | ||
end | ||
end | ||
|
||
function gradient_1d_benchmarkable(D, T, V, n) | ||
n = Integer(n/10) | ||
order = num_indep_components(V) | ||
v = zeros(D,order+1); | ||
x = rand(MVector{n,T}) | ||
return @benchmarkable gradient_1d_driver($_gradient_1d!,$order,$D,$v,$x) | ||
end | ||
|
||
################################################ | ||
# src/Polynomials/MonomialBasis.jl:_hessian_1d! | ||
################################################ | ||
|
||
_hessian_1d! = Gridap.Polynomials._hessian_1d! | ||
|
||
function hessian_1d_driver(f,order,D,v,x_vec) | ||
for x in x_vec | ||
f(v,x,order,D) | ||
end | ||
end | ||
|
||
function hessian_1d_benchmarkable(D, T, V, n) | ||
n = Integer(n/10) | ||
order = num_indep_components(V) | ||
v = zeros(D,order+1); | ||
x = rand(MVector{n,T}) | ||
return @benchmarkable hessian_1d_driver($_hessian_1d!,$order,$D,$v,$x) | ||
end | ||
|
||
##################### | ||
# benchmarkable suite | ||
##################### | ||
|
||
const SUITE = BenchmarkGroup() | ||
|
||
const benchmarkables = ( | ||
set_value_benchmarkable, | ||
set_value_mc0_benchmarkable, | ||
set_gradient_benchmarkable, | ||
set_gradient_mc0_benchmarkable, | ||
evaluate_1d_benchmarkable, | ||
gradient_1d_benchmarkable, | ||
hessian_1d_benchmarkable | ||
) | ||
|
||
const dims=(1, 2, 3, 5, 8) | ||
const n = 3000 | ||
const T = Float64 | ||
|
||
for benchable in benchmarkables | ||
for D in dims | ||
TV = [ | ||
VectorValue{D,T}, | ||
TensorValue{D,D,T,D*D}, | ||
SymTensorValue{D,T,Integer(D*(D+1)/2)}, | ||
SymTracelessTensorValue{D,T,Integer(D*(D+1)/2)} | ||
] | ||
|
||
for V in TV | ||
if V == SymTracelessTensorValue{1,T,1} continue end # no dofs | ||
name = "monomial_basis_$(D)D_$(V)_$(benchable)" | ||
SUITE[name] = benchable(D, T, V, n) | ||
end | ||
end | ||
end | ||
|
||
end # module |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,9 +1,151 @@ | ||
# Gridap.TensorValues | ||
|
||
```@meta | ||
CurrentModule = Gridap.TensorValues | ||
``` | ||
|
||
# Gridap.TensorValues | ||
This module provides the abstract interface `MultiValue` representing tensors | ||
that are also `Number`s, along with concrete implementations for the following | ||
tensors: | ||
- 1st order [`VectorValue`](@ref), | ||
- 2nd order [`TensorValue`](@ref), | ||
- 2nd order and symmetric [`SymTensorValue`](@ref), | ||
- 2nd order, symmetric and traceless [`SymTracelessTensorValue`](@ref), | ||
- 3rd order [`ThirdOrderTensorValue`](@ref), | ||
- 4th order and symmetric [`SymFourthOrderTensorValue`](@ref). | ||
|
||
## Generalities | ||
|
||
The main feature of this module is that the provided types do not extend from `AbstractArray`, but from `Number`! | ||
|
||
This allows one to work with them as if they were scalar values in broadcasted operations on arrays of `VectorValue` objects (also for `TensorValue` or `MultiValue` objects). For instance, one can perform the following manipulations: | ||
```julia | ||
# Assign a VectorValue to all the entries of an Array of VectorValues | ||
A = zeros(VectorValue{2,Int}, (4,5)) | ||
v = VectorValue(12,31) | ||
A .= v # This is possible since VectorValue <: Number | ||
|
||
```@autodocs | ||
Modules = [TensorValues,] | ||
# Broadcasting of tensor operations in arrays of TensorValues | ||
t = TensorValue(13,41,53,17) # creates a 2x2 TensorValue | ||
g = TensorValue(32,41,3,14) # creates another 2x2 TensorValue | ||
B = fill(t,(1,5)) | ||
C = inner.(g,B) # inner product of g against all TensorValues in the array B | ||
@show C | ||
# C = [2494 2494 2494 2494 2494] | ||
``` | ||
|
||
To create a [`::MultiValue`](@ref) tensor from components, these should be given | ||
as separate arguments or all gathered in a `tuple`. The order of the arguments | ||
is the order of the linearized Cartesian indices of the corresponding array | ||
(order of the `Base.LinearIndices` indices): | ||
```julia | ||
using StaticArrays | ||
t = TensorValue( (1, 2, 3, 4) ) | ||
ts= convert(SMatrix{2,2,Int}, t) | ||
@show ts | ||
# 2×2 SMatrix{2, 2, Int64, 4} with indices SOneTo(2)×SOneTo(2): | ||
# 1 3 | ||
# 2 4 | ||
t2[1,2] == t[1,2] == 3 # true | ||
``` | ||
For symmetric tensor types, only the independent components should be given, see | ||
[`SymTensorValue`](@ref), [`SymTracelessTensorValue`](@ref) and [`SymFourthOrderTensorValue`](@ref). | ||
|
||
A `MultiValue` can be created from an `AbstractArray` of the same size. If the | ||
`MultiValue` type has internal constraints (e.g. symmetries), ONLY the required | ||
components are picked from the array WITHOUT CHECKING if the given array | ||
did respect the constraints: | ||
```julia | ||
SymTensorValue( [1 2; 3 4] ) # -> SymTensorValue{2, Int64, 3}(1, 2, 4) | ||
SymTensorValue( SMatrix{2}(1,2,3,4) ) # -> SymTensorValue{2, Int64, 3}(1, 3, 4) | ||
``` | ||
|
||
`MultiValue`s can be converted to static and mutable arrays types from | ||
`StaticArrays.jl` using `convert` and [`mutable`](@ref), respectively. | ||
|
||
## Tensor types | ||
|
||
The following concrete tensor types are currently implemented: | ||
|
||
```@docs | ||
VectorValue | ||
TensorValue | ||
SymTensorValue | ||
SymTracelessTensorValue | ||
ThirdOrderTensorValue | ||
SymFourthOrderTensorValue | ||
``` | ||
|
||
### Abstract tensor types | ||
|
||
```@docs | ||
MultiValue | ||
AbstractSymTensorValue | ||
``` | ||
|
||
## Interface | ||
|
||
The tensor types implement methods for the following `Base` functions: `getindex`, `length`, `size`, `rand`, `zero`, `real`, `imag` and `conj`. | ||
|
||
`one` is also implemented in particular cases: it is defined for second | ||
and fourth order tensors. For second order, it returns the identity tensor `δij`, | ||
except `SymTracelessTensorValue` that does not implement `one`. For fourth order symmetric tensors, see [`one`](@ref). | ||
|
||
Additionally, the tensor types expose the following interface: | ||
|
||
```@docs | ||
num_components | ||
mutable | ||
Mutable | ||
num_indep_components | ||
indep_comp_getindex | ||
indep_components_names | ||
change_eltype | ||
inner | ||
dot | ||
double_contraction | ||
outer | ||
``` | ||
|
||
### Other type specific interfaces | ||
|
||
#### For square second order tensors | ||
|
||
```@docs | ||
det | ||
inv | ||
symmetric_part | ||
``` | ||
|
||
#### For first order tensors | ||
|
||
```@docs | ||
diagonal_tensor | ||
``` | ||
|
||
#### For second and third order tensors | ||
|
||
```@docs | ||
tr | ||
``` | ||
|
||
#### For first and second order tensors | ||
|
||
```@docs | ||
norm | ||
meas | ||
``` | ||
|
||
#### For `VectorValue` of length 2 and 3 | ||
|
||
```@docs | ||
cross | ||
``` | ||
|
||
#### For second order non-traceless and symmetric fourth order tensors | ||
|
||
```@docs | ||
one | ||
``` | ||
|
Oops, something went wrong.