Skip to content

Commit

Permalink
Merge branch 'FatraGNN' of https://github.com/taorann/GammaGL into Fa…
Browse files Browse the repository at this point in the history
…traGNN
  • Loading branch information
taorann committed Jul 30, 2024
2 parents dc2580f + 078240d commit 8eff9c1
Show file tree
Hide file tree
Showing 14 changed files with 642 additions and 8 deletions.
3 changes: 2 additions & 1 deletion docs/source/api/gammagl.utils.rst
Original file line number Diff line number Diff line change
Expand Up @@ -27,4 +27,5 @@ gammagl.utils
gammagl.utils.to_scipy_sparse_matrix
gammagl.utils.read_embeddings
gammagl.utils.homophily
gammagl.utils.get_train_val_test_split
gammagl.utils.get_train_val_test_split
gammagl.utils.find_all_simple_paths
17 changes: 17 additions & 0 deletions examples/dhn/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
# Distance encoding based Heterogeneous graph neural Network (DHN)
- Paper link: [https://ieeexplore.ieee.org/document/10209229](https://ieeexplore.ieee.org/document/10209229)
- Author's code repo: [https://github.com/BUPT-GAMMA/HDE](https://github.com/BUPT-GAMMA/HDE)

## Dataset Statics
| Dataset | # Nodes | # Edges |
|----------|---------|---------|
| acm | 3908 | 4500 |

## Results
```bash
TL_BACKEND="torch" python dhn_trainer.py --test_ratio 0.3 --one_hot True --k_hop 2 --num_neighbor 5 --batch_size 32 --lr 0.001 --n_epoch 100 --drop_rate 0.01 --dataset 'acm'
```

| Dataset | Paper(AUC) | Our(th)(AUC) |
| -------- | ----- | ----------- |
| acm | 95.07 | 95.54±0.18 |
339 changes: 339 additions & 0 deletions examples/dhn/dhn_trainer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,339 @@
import os
# os.environ['CUDA_VISIBLE_DEVICES'] = '0'
# os.environ['TL_BACKEND'] = 'torch'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# 0:Output all; 1:Filter out INFO; 2:Filter out INFO and WARNING; 3:Filter out INFO, WARNING, and ERROR

import argparse
import random
import numpy as np
import tensorlayerx as tlx
from tensorlayerx.model import TrainOneStep
from sklearn.metrics import roc_auc_score
from gammagl.models import DHNModel
from gammagl.datasets import ACM4DHN
from gammagl.utils import k_hop_subgraph, find_all_simple_paths


type2idx = {
'M': 0,
'A': 1,
# 'C': 2,
# 'T': 3
}


def dist_encoder(src, dest, G, k_hop):
if (G.size(1) == 0):
paths = []
else:
paths = find_all_simple_paths(G, src, dest, k_hop + 2)

node_type = len(type2idx)
cnt = [k_hop + 1] * node_type # Default truncation for max_spd exceeded
for path in paths:
res = [0] * node_type
for i in path:
if i >= 0:
res[type2idx['M']] += 1
else:
res[type2idx['A']] += 1

for k in range(node_type):
cnt[k] = min(cnt[k], res[k])

# Generate one-hot encoding
if args.one_hot:
one_hot_list = [np.eye(k_hop + 2, dtype=np.float64)[cnt[i]]
for i in range(node_type)]
return np.concatenate(one_hot_list)
return cnt


def type_encoder(node):
node_type = len(type2idx)
res = [0] * node_type
if node.item() >= 0:
res[type2idx['M']] = 1.0
else:
res[type2idx['A']] = 1.0
return res


mini_batch = []
fea_batch = []


def gen_fea_batch(G, root, fea_dict, k_hop):
fea_batch = []
mini_batch.append(root)

a = [0] * (k_hop + 2) * 4 + type_encoder(root)

node_type = len(type2idx)
num_fea = (k_hop + 2) * 4 + node_type
fea_batch.append(np.asarray(a,
dtype=np.float32
).reshape(-1, num_fea)
)

# 1-order neighbor sampling
ns_1 = []
src, dst = G
for node in mini_batch[-1]:
if node.item() >= 0:
neighbors_mask = src == node
else:
neighbors_mask = dst == node
neighbors = list(tlx.convert_to_numpy(dst[neighbors_mask]))
neighbors.append(node.item())
random_choice_list = np.random.choice(neighbors, args.num_neighbor, replace=True)
ns_1.append(random_choice_list.tolist())
ns_1 = tlx.convert_to_tensor(ns_1)
mini_batch.append(ns_1[0])

de_1 = [
np.concatenate([fea_dict[ns_1[0][i].item()], np.asarray(type_encoder(ns_1[0][i]))], axis=0)
for i in range(0, ns_1[0].shape[0])
]

fea_batch.append(np.asarray(de_1,
dtype=np.float32).reshape(1, -1)
)

# 2-order neighbor sampling
ns_2 = []
for node in mini_batch[-1]:
if node.item() >= 0:
neighbors_mask = src == node
else:
neighbors_mask = dst == node
neighbors = list(tlx.convert_to_numpy(dst[neighbors_mask]))
neighbors.append(node.item())
random_choice_list = np.random.choice(neighbors, args.num_neighbor, replace=True)
ns_2.append(random_choice_list.tolist())
ns_2 = tlx.convert_to_tensor(ns_2)

de_2 = []
for i in range(len(ns_2)):
tmp = []
for j in range(len(ns_2[0])):
tmp.append(
np.concatenate([fea_dict[ns_2[i][j].item()], np.asarray(type_encoder(ns_2[i][j]))], axis=0)
)
de_2.append(tmp)

fea_batch.append(np.asarray(de_2,
dtype=np.float32).reshape(1, -1)
)

return np.concatenate(fea_batch, axis=1)


def subgraph_sampling_with_DE_node_pair(G, node_pair, k_hop=2):
[A, B] = node_pair

edge_index = tlx.concat([G['M', 'MA', 'A'].edge_index, reversed(G['M', 'MA', 'A'].edge_index)], axis=1)

# Find k-hop subgraphs of A and B
sub_G_for_AB = k_hop_subgraph([A, B], k_hop, edge_index)

# Remove edges using Boolean indexes
# Note: Just remove the edges, the points remain
edge_index_np = tlx.convert_to_numpy(sub_G_for_AB[1])
remove_indices = tlx.convert_to_tensor([
((edge_index_np[0, i] == A) & (edge_index_np[1, i] == B)) | (
(edge_index_np[0, i] == B) & (edge_index_np[1, i] == A))
for i in range(sub_G_for_AB[1].shape[1])
])
remove_indices = tlx.convert_to_numpy(remove_indices)
sub_G_index = sub_G_for_AB[1][:, ~remove_indices]

sub_G_nodes = set(np.unique(tlx.convert_to_numpy(sub_G_for_AB[0]))) | set(
np.unique(tlx.convert_to_numpy(sub_G_for_AB[1]))) # Gets the points in the graph
sub_G_nodes = tlx.convert_to_tensor(list(sub_G_nodes))

# Distance from all points in the subgraph to the node pair
SPD_based_on_node_pair = {}
for node in sub_G_nodes:
tmpA = dist_encoder(A, node, sub_G_index, k_hop)
tmpB = dist_encoder(B, node, sub_G_index, k_hop)

SPD_based_on_node_pair[node.item()] = np.concatenate([tmpA, tmpB], axis=0)

A_fea_batch = gen_fea_batch(sub_G_index, A,
SPD_based_on_node_pair, k_hop)
B_fea_batch = gen_fea_batch(sub_G_index, B,
SPD_based_on_node_pair, k_hop)

return A_fea_batch, B_fea_batch


def batch_data(G, batch_size):
edge_index = G['M', 'MA', 'A'].edge_index
nodes = set(tlx.convert_to_tensor(np.unique(tlx.convert_to_numpy(edge_index[0])))) | set(
tlx.convert_to_tensor(np.unique(tlx.convert_to_numpy(edge_index[1]))))

nodes_list = []
for node in nodes:
nodes_list.append(node.item())

num_batch = int(len(edge_index[0]) / batch_size)

# Shuffle the order of the edges
edge_index_np = tlx.convert_to_numpy(edge_index)
permutation = np.random.permutation(edge_index_np.shape[1]) # Generate a randomly arranged index
edge_index_np = edge_index_np[:, permutation] # Use this permutation index to scramble edge_index
edge_index = tlx.convert_to_tensor(edge_index_np)

for idx in range(num_batch):
batch_edge = edge_index[:, idx * batch_size:(idx + 1) * batch_size] # Take out batch_size edges
batch_label = [1.0] * batch_size

batch_A_fea = []
batch_B_fea = []
batch_x = []
batch_y = []

i = 0
for by in batch_label:
bx = batch_edge[:, i:i + 1]

# Positive sample
posA, posB = subgraph_sampling_with_DE_node_pair(G, bx, k_hop=args.k_hop)
batch_A_fea.append(posA)
batch_B_fea.append(posB)
batch_y.append(np.asarray(by, dtype=np.float32))

# Negative sample
neg_tmpB_id = random.choice(nodes_list)
node_pair = tlx.convert_to_tensor([[bx[0].item()], [neg_tmpB_id]])

negA, negB = subgraph_sampling_with_DE_node_pair(G, node_pair, k_hop=args.k_hop)
batch_A_fea.append(negA)
batch_B_fea.append(negB)
batch_y.append(np.asarray(0.0, dtype=np.float32))

yield np.asarray(np.squeeze(batch_A_fea)), np.asarray(np.squeeze(batch_B_fea)), np.asarray(
batch_y).reshape(batch_size * 2, 1)


class Loss(tlx.model.WithLoss):
def __init__(self, net, loss_fn):
super(Loss, self).__init__(backbone=net, loss_fn=loss_fn)

def forward(self, data, y):
logits = self.backbone_network(data['n1'], data['n2'], data['label'])
y = tlx.convert_to_tensor(y)
loss = self._loss_fn(logits, y)
return loss


class AUCMetric:
def __init__(self):
self.true_labels = []
self.predicted_scores = []

def update_state(self, y_true, y_pred):
self.true_labels.extend(y_true)
self.predicted_scores.extend(y_pred)

def result(self):
auc = roc_auc_score(self.true_labels, self.predicted_scores)
return auc


def main(args):
if str.lower(args.dataset) not in ['acm']:
raise ValueError('Unknown dataset: {}'.format(args.dataset))
if str.lower(args.dataset) == 'acm':
data = ACM4DHN(root=args.dataset_path, test_ratio=args.test_ratio)

graph = data[0]

G_train = graph['train']
G_val = graph['val']
G_test = graph['test']

node_type = len(type2idx)
num_fea = (args.k_hop + 2) * 4 + node_type

model = DHNModel(num_fea, args.batch_size, args.num_neighbor, name="DHN")

optim = tlx.optimizers.Adam(lr=args.lr, weight_decay=args.drop_rate)
train_weights = model.trainable_weights

net_with_loss = Loss(model, loss_fn=tlx.losses.sigmoid_cross_entropy)
net_with_train = TrainOneStep(net_with_loss, optim, train_weights)

tra_auc_metric = AUCMetric()
val_auc_metric = AUCMetric()
test_auc_metric = AUCMetric()

best_val_auc = 0
for epoch in range(args.n_epoch):

# train
model.set_train()
tra_batch_A_fea, tra_batch_B_fea, tra_batch_y = batch_data(G_train, args.batch_size).__next__()
tra_out = model(tra_batch_A_fea, tra_batch_B_fea, tra_batch_y)

data = {
"n1": tra_batch_A_fea,
"n2": tra_batch_B_fea,
"label": tra_batch_y
}

tra_loss = net_with_train(data, tra_batch_y)
tra_auc_metric.update_state(y_true=tra_batch_y, y_pred=tlx.convert_to_numpy(tlx.sigmoid(tra_out)))
tra_auc = tra_auc_metric.result()

# val
model.set_eval()
val_batch_A_fea, val_batch_B_fea, val_batch_y = batch_data(G_val, args.batch_size).__next__()
val_out = model(val_batch_A_fea, val_batch_B_fea, val_batch_y)

val_auc_metric.update_state(y_true=val_batch_y, y_pred=tlx.convert_to_numpy(tlx.sigmoid(val_out)))
val_auc = val_auc_metric.result()

print("Epoch [{:0>3d}] ".format(epoch+1)\
+ " train loss: {:.4f}".format(tra_loss.item())\
+ " val auc: {:.4f}".format(val_auc))

if val_auc > best_val_auc:
best_val_auc = val_auc
model.save_weights(args.best_model_path+model.name+".npz", format='npz_dict')

model.load_weights(args.best_model_path+model.name+".npz", format='npz_dict')
# test
test_batch_A_fea, test_batch_B_fea, test_batch_y = batch_data(G_test, args.batch_size).__next__()
test_out = model(test_batch_A_fea, test_batch_B_fea, test_batch_y)

test_auc_metric.update_state(y_true=test_batch_y, y_pred=tlx.convert_to_numpy(tlx.sigmoid(test_out)))
test_auc = test_auc_metric.result()
print("Test auc: {:.4f}".format(test_auc))


if __name__ == '__main__':
# parameters setting
parser = argparse.ArgumentParser()
parser.add_argument("--test_ratio", type=float, default=0.3, help="ratio of dividing the data set")
parser.add_argument("--one_hot", type=bool, default=True, help="use one-hot encoding")
parser.add_argument("--k_hop", type=int, default=2, help="hops of the generated subgraph")
parser.add_argument("--num_neighbor", type=int, default=5, help="neighbor sample number")
parser.add_argument("--batch_size", type=int, default=32, help="batch size")
parser.add_argument("--lr", type=float, default=0.001, help="learning rate")
parser.add_argument("--n_epoch", type=int, default=100, help="number of epoch")
parser.add_argument("--drop_rate", type=float, default=0.01, help="drop_rate")
parser.add_argument('--dataset', type=str, default='acm', help='dataset')
parser.add_argument("--dataset_path", type=str, default=r"", help='dataset_path')
parser.add_argument("--best_model_path", type=str, default=r'./', help="path to save best model")
parser.add_argument("--gpu", type=int, default=-1)

args = parser.parse_args()
if args.gpu >= 0:
tlx.set_device("GPU", args.gpu)
else:
tlx.set_device("CPU")

main(args)
6 changes: 3 additions & 3 deletions gammagl/datasets/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,8 +25,7 @@
from .yelp import Yelp
from .bail import Bail
from .credit import Credit


from .acm4dhn import ACM4DHN

__all__ = [
'ACM4HeCo',
Expand Down Expand Up @@ -54,7 +53,8 @@
'NGSIM_US_101',
'Yelp',
'Bail',
'Credit'
'Credit',
'ACM4DHN'
]

classes = __all__
Loading

0 comments on commit 8eff9c1

Please sign in to comment.