Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

about FatraGNN, including model,datasets and example #218

Merged
merged 9 commits into from
Nov 15, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions .github/workflows/test_push.yml
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,10 @@ jobs:
run: |
pip install torch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 --index-url https://download.pytorch.org/whl/cu121

- name: Install Tensorflow
run: |
pip install tensorflow==2.11.0

- name: Install llvmlite
run: |
pip install llvmlite
Expand Down
4 changes: 4 additions & 0 deletions .github/workflows/test_pypi_package.yml
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,10 @@ jobs:
run: |
pip install torch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 --index-url https://download.pytorch.org/whl/cu121

- name: Install Tensorflow
run: |
pip install tensorflow==2.11.0

- name: Install llvmlite
run: |
pip install llvmlite
Expand Down
24 changes: 24 additions & 0 deletions examples/fatragnn/config.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
bail:
epochs: 400
g_epochs: 5
a_epochs: 4
cla_epochs: 10
dic_epochs: 8
dtb_epochs: 5
d_lr: 0.001
c_lr: 0.005
e_lr: 0.005
g_lr: 0.05
drope_rate: 0.1
credit:
epochs: 600
g_epochs: 5
a_epochs: 2
cla_epochs: 12
dic_epochs: 5
dtb_epochs: 5
d_lr: 0.001
c_lr: 0.01
e_lr: 0.01
g_lr: 0.05
drope_rate: 0.1
293 changes: 293 additions & 0 deletions examples/fatragnn/fatragnn_trainer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,293 @@
import os
# os.environ['CUDA_VISIBLE_DEVICES'] = '0'
os.environ['TL_BACKEND'] = 'torch'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# 0:Output all; 1:Filter out INFO; 2:Filter out INFO and WARNING; 3:Filter out INFO, WARNING, and ERROR
import tensorlayerx as tlx
from gammagl.models import FatraGNNModel
import argparse
import numpy as np
from tensorlayerx.model import TrainOneStep, WithLoss
from sklearn.metrics import roc_auc_score
import scipy.sparse as sp
import yaml
from gammagl.datasets import Bail
from gammagl.datasets import Credit


def fair_metric(pred, labels, sens):
idx_s0 = sens == 0
idx_s1 = sens == 1
idx_s0_y1 = np.bitwise_and(idx_s0, labels == 1)
idx_s1_y1 = np.bitwise_and(idx_s1, labels == 1)
parity = abs(sum(pred[idx_s0]) / sum(idx_s0) -
sum(pred[idx_s1]) / sum(idx_s1))
equality = abs(sum(pred[idx_s0_y1]) / sum(idx_s0_y1) -
sum(pred[idx_s1_y1]) / sum(idx_s1_y1))
return parity.item(), equality.item()


def evaluate_ged3(net, x, edge_index, y, test_mask, sens):
net.set_eval()
flag = 0
output = net(x, edge_index, flag)
pred_test = tlx.cast(tlx.squeeze(output[test_mask], axis=-1) > 0, y.dtype)

acc_nums_test = (pred_test == y[test_mask])
accs = np.sum(tlx.convert_to_numpy(acc_nums_test))/np.sum(tlx.convert_to_numpy(test_mask))

auc_rocs = roc_auc_score(tlx.convert_to_numpy(y[test_mask]), tlx.convert_to_numpy(output[test_mask]))
paritys, equalitys = fair_metric(tlx.convert_to_numpy(pred_test), tlx.convert_to_numpy(y[test_mask]), tlx.convert_to_numpy(sens[test_mask]))

return accs, auc_rocs, paritys, equalitys


class DicLoss(WithLoss):
def __init__(self, net, loss_fn):
super(DicLoss, self).__init__(backbone=net, loss_fn=loss_fn)

def forward(self, data, label):
output = self.backbone_network(data['x'], data['edge_index'], data['flag'])
loss = tlx.losses.binary_cross_entropy(tlx.squeeze(output, axis=-1), tlx.cast(data['sens'], dtype=tlx.float32))
return loss


class EncClaLoss(WithLoss):
def __init__(self, net, loss_fn):
super(EncClaLoss, self).__init__(backbone=net, loss_fn=loss_fn)

def forward(self, data, label):
output = self.backbone_network(data['x'], data['edge_index'], data['flag'])
y_train = tlx.cast(tlx.expand_dims(label[data['train_mask']], axis=1), dtype=tlx.float32)
loss = tlx.losses.binary_cross_entropy(output[data['train_mask']], y_train)
return loss


class EncLoss(WithLoss):
def __init__(self, net, loss_fn):
super(EncLoss, self).__init__(backbone=net, loss_fn=loss_fn)

def forward(self, data, label):
output = self.backbone_network(data['x'], data['edge_index'], data['flag'])
loss = tlx.losses.mean_squared_error(output, 0.5 * tlx.ones_like(output))
return loss


class EdtLoss(WithLoss):
def __init__(self, net, loss_fn):
super(EdtLoss, self).__init__(backbone=net, loss_fn=loss_fn)

def forward(self, data, label):
output = self.backbone_network(data['x'], data['edge_index'], data['flag'])
loss = -tlx.abs(tlx.reduce_sum(output[data['train_mask']][data['t_idx_s0_y1']])) / tlx.reduce_sum(tlx.cast(data['t_idx_s0_y1'], dtype=tlx.float32)) - tlx.reduce_sum(output[data['train_mask']][data['t_idx_s1_y1']]) / tlx.reduce_sum(tlx.cast(data['t_idx_s1_y1'], dtype=tlx.float32))

return loss


class AliLoss(WithLoss):
def __init__(self, net, loss_fn):
super(AliLoss, self).__init__(backbone=net, loss_fn=loss_fn)

def forward(self, data, label):
output = self.backbone_network(data['x'], data['edge_index'], data['flag'])
h1 = output['h1']
h2 = output['h2']
idx_s0_y0 = data['idx_s0_y0']
idx_s1_y0 = data['idx_s1_y0']
idx_s0_y1 = data['idx_s0_y1']
idx_s1_y1 = data['idx_s1_y1']
node_num = data['x'].shape[0]
loss_align = - node_num / (tlx.reduce_sum(tlx.cast(idx_s0_y0, dtype=tlx.float32))) * tlx.reduce_mean(tlx.matmul(h1[idx_s0_y0], tlx.transpose(h2[idx_s0_y0]))) \
- node_num / (tlx.reduce_sum(tlx.cast(idx_s0_y1, dtype=tlx.float32))) * tlx.reduce_mean(tlx.matmul(h1[idx_s0_y1], tlx.transpose(h2[idx_s0_y1]))) \
- node_num / (tlx.reduce_sum(tlx.cast(idx_s1_y0, dtype=tlx.float32))) * tlx.reduce_mean(tlx.matmul(h1[idx_s1_y0], tlx.transpose(h2[idx_s1_y0]))) \
- node_num / (tlx.reduce_sum(tlx.cast(idx_s1_y1, dtype=tlx.float32))) * tlx.reduce_mean(tlx.matmul(h1[idx_s1_y1], tlx.transpose(h2[idx_s1_y1])))

loss = loss_align * 0.01
return loss


def main(args):

# load datasets
if str.lower(args.dataset) not in ['bail', 'credit', 'pokec']:
raise ValueError('Unknown dataset: {}'.format(args.dataset))

if args.dataset == 'bail':
dataset = Bail(args.dataset_path, args.dataset)

elif args.dataset == 'credit':
dataset = Credit(args.dataset_path, args.dataset)

graphs = dataset.data
data = {
'x':graphs[0].x,
'y': graphs[0].y,
'edge_index': {'edge_index': graphs[0].edge_index},
'sens': graphs[0].sens,
'train_mask': graphs[0].train_mask,
}
data_test = []
for i in range(1, len(graphs)):
data_tem = {
'x':graphs[i].x,
'y': graphs[i].y,
'edge_index': graphs[i].edge_index,
'sens': graphs[i].sens,
'test_mask': graphs[i].train_mask | graphs[i].val_mask | graphs[i].test_mask,
}
data_test.append(data_tem)
dataset = None
graphs = None
args.num_features, args.num_classes = data['x'].shape[1], len(np.unique(tlx.convert_to_numpy(data['y']))) - 1
args.test_set_num = len(data_test)

t_idx_s0 = data['sens'][data['train_mask']] == 0
t_idx_s1 = data['sens'][data['train_mask']] == 1
t_idx_s0_y1 = tlx.logical_and(t_idx_s0, data['y'][data['train_mask']] == 1)
t_idx_s1_y1 = tlx.logical_and(t_idx_s1, data['y'][data['train_mask']] == 1)

idx_s0 = data['sens'] == 0
idx_s1 = data['sens'] == 1
idx_s0_y1 = tlx.logical_and(idx_s0, data['y'] == 1)
idx_s1_y1 = tlx.logical_and(idx_s1, data['y'] == 1)
idx_s0_y0 = tlx.logical_and(idx_s0, data['y'] == 0)
idx_s1_y0 = tlx.logical_and(idx_s1, data['y'] == 0)

data['idx_s0_y0'] = idx_s0_y0
data['idx_s1_y0'] = idx_s1_y0
data['idx_s0_y1'] = idx_s0_y1
data['idx_s1_y1'] = idx_s1_y1
data['t_idx_s0_y1'] = t_idx_s0_y1
data['t_idx_s1_y1'] = t_idx_s1_y1

edge_index_np = tlx.convert_to_numpy(data['edge_index']['edge_index'])
adj = sp.coo_matrix((np.ones(data['edge_index']['edge_index'].shape[1]), (edge_index_np[0, :], edge_index_np[1, :])),
shape=(data['x'].shape[0], data['x'].shape[0]),
dtype=np.float32)
A2 = adj.dot(adj)
A2 = A2.toarray()
A2_edge = tlx.convert_to_tensor(np.vstack((A2.nonzero()[0], A2.nonzero()[1])))

net = FatraGNNModel(args)

dic_loss_func = DicLoss(net, tlx.losses.binary_cross_entropy)
enc_cla_loss_func = EncClaLoss(net, tlx.losses.binary_cross_entropy)
enc_loss_func = EncLoss(net, tlx.losses.binary_cross_entropy)
edt_loss_func = EdtLoss(net, tlx.losses.binary_cross_entropy)
ali_loss_func = AliLoss(net, tlx.losses.binary_cross_entropy)

dic_opt = tlx.optimizers.Adam(lr=args.d_lr, weight_decay=args.d_wd)
dic_train_one_step = TrainOneStep(dic_loss_func, dic_opt, net.discriminator.trainable_weights)

enc_cla_opt = tlx.optimizers.Adam(lr=args.c_lr, weight_decay=args.c_wd)
enc_cla_train_one_step = TrainOneStep(enc_cla_loss_func, enc_cla_opt, net.encoder.trainable_weights+net.classifier.trainable_weights)

enc_opt = tlx.optimizers.Adam(lr=args.e_lr, weight_decay=args.e_wd)
enc_train_one_step = TrainOneStep(enc_loss_func, enc_opt, net.encoder.trainable_weights)

edt_opt = tlx.optimizers.Adam(lr=args.g_lr, weight_decay=args.g_wd)
edt_train_one_step = TrainOneStep(edt_loss_func, edt_opt, net.graphEdit.trainable_weights)

ali_opt = tlx.optimizers.Adam(lr=args.e_lr, weight_decay=args.e_wd)
ali_train_one_step = TrainOneStep(ali_loss_func, ali_opt, net.encoder.trainable_weights)

tlx.set_seed(args.seed)
net.set_train()
for epoch in range(0, args.epochs):
print(f"======={epoch}=======")
# train discriminator to recognize the sensitive group
data['flag'] = 1
for epoch_d in range(0, args.dic_epochs):
dic_loss = dic_train_one_step(data=data, label=data['y'])

# train classifier and encoder
data['flag'] = 2
for epoch_c in range(0, args.cla_epochs):
enc_cla_loss = enc_cla_train_one_step(data=data, label=data['y'])

# train encoder to fool discriminator
data['flag'] = 3
for epoch_g in range(0, args.g_epochs):
enc_loss = enc_train_one_step(data=data, label=data['y'])

# train generator
data['flag'] = 4
if epoch > args.start:
if epoch % 10 == 0:
if epoch % 20 == 0:
data['edge_index']['edge_index2'] = net.graphEdit.modify_structure1(data['edge_index']['edge_index'], A2_edge, data['sens'], data['x'].shape[0], args.drope_rate)
else:
data['edge_index']['edge_index2'] = net.graphEdit.modify_structure2(data['edge_index']['edge_index'], A2_edge, data['sens'], data['x'].shape[0], args.drope_rate)
else:
data['edge_index']['edge_index2'] = data['edge_index']['edge_index']

for epoch_g in range(0, args.dtb_epochs):
edt_loss = edt_train_one_step(data=data, label=data['y'])

# shift align
data['flag'] = 5
if epoch > args.start:
for epoch_a in range(0, args.a_epochs):
aliloss = ali_train_one_step(data=data, label=data['y'])

acc = np.zeros([args.test_set_num])
auc_roc = np.zeros([args.test_set_num])
parity = np.zeros([args.test_set_num])
equality = np.zeros([args.test_set_num])
net.set_eval()
for i in range(args.test_set_num):
data_tem = data_test[i]
acc[i],auc_roc[i], parity[i], equality[i] = evaluate_ged3(net, data_tem['x'], data_tem['edge_index'], data_tem['y'], data_tem['test_mask'], data_tem['sens'])
return acc, auc_roc, parity, equality

if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='bail')
parser.add_argument('--start', type=int, default=50)
parser.add_argument('--epochs', type=int, default=400)
parser.add_argument('--dic_epochs', type=int, default=5)
parser.add_argument('--dtb_epochs', type=int, default=5)
parser.add_argument('--cla_epochs', type=int, default=12)
parser.add_argument('--a_epochs', type=int, default=2)
parser.add_argument('--g_epochs', type=int, default=5)
parser.add_argument('--g_lr', type=float, default=0.05)
parser.add_argument('--g_wd', type=float, default=0.01)
parser.add_argument('--d_lr', type=float, default=0.001)
parser.add_argument('--d_wd', type=float, default=0)
parser.add_argument('--c_lr', type=float, default=0.001)
parser.add_argument('--c_wd', type=float, default=0.01)
parser.add_argument('--e_lr', type=float, default=0.005)
parser.add_argument('--e_wd', type=float, default=0)
parser.add_argument('--hidden', type=int, default=128)
parser.add_argument('--seed', type=int, default=3)
parser.add_argument('--top_k', type=int, default=10)
parser.add_argument('--gpu', type=int, default=1)
parser.add_argument('--drope_rate', type=float, default=0.1)
parser.add_argument("--dataset_path", type=str, default=r'', help="path to save dataset")

args = parser.parse_args()

if args.gpu >= 0:
tlx.set_device("GPU", args.gpu)
else:
tlx.set_device("CPU")
args.device = f'cuda:{args.gpu}'


fileNamePath = os.path.split(os.path.realpath(__file__))[0]
yamlPath = os.path.join(fileNamePath, 'config.yaml')
with open(yamlPath, 'r', encoding='utf-8') as f:
cont = f.read()
config_dict = yaml.safe_load(cont)[args.dataset]
for key, value in config_dict.items():
args.__setattr__(key, value)

print(args)
acc, auc_roc, parity, equality = main(args)

for i in range(args.test_set_num):
print("===========test{}============".format(i+1))
print('Acc: ', acc.T[i])
print('auc_roc: ', auc_roc.T[i])
print('parity: ', parity.T[i])
print('equality: ', equality.T[i])
Loading
Loading