We identify a new resonance, axion magnetic resonance (AMR), that can greatly enhance the conversion rate between axions and photons. A series of axion search experiments rely on converting them into photons inside a constant magnetic field background. A common bottleneck of such experiments is the conversion amplitude being suppressed by the axion mass when
This is the numerical code that accompanies the publication.
- Python 3
- numpy
- scipy
- pickle
To run this code, check out the notebook demo.ipynb
. To reproduce the scan in
python scan.py
-s < initial coordinate >
-e < end of propagation >
-B < magnetic field in Tesla >
-w < laser wavelength in nm >
-N < number of domains >
-l < lower value of log10ma >
-u < lower value of log10ma >
-g < grid size >
-o < output folder >
-n < number of polls>
-c < ga in GeV**-1>
-v < variation of noise>
-f < fraction variation of noise
-t < theta dot mean>
-p < initial state: photon 0, axion 1>
The results can then be loaded using demo.ipynb
. The scans used in this work was produced with the following directive for the axion production mode:
python scan.py -s 0 -e 106 -B 5.3 -w 1064 -N 2000 -l -4.5 -u -2.5 -g 20 -n 100 -c 1.e-11 -f 0.01 -t 1. -p 0 -o chains/run024_prod_N2000_f001
python scan.py -s 0 -e 106 -B 5.3 -w 1064 -N 2000 -l -4.5 -u -2.5 -g 20 -n 100 -c 1.e-11 -f 0.10 -t 1. -p 0 -o chains/run024_prod_N2000_f010
python scan.py -s 0 -e 106 -B 5.3 -w 1064 -N 10 -l -4.5 -u -2.5 -g 20 -n 100 -c 1.e-11 -f 0.01 -t 1. -p 0 -o chains/run024_prod_N10_f001
python scan.py -s 0 -e 106 -B 5.3 -w 1064 -N 10 -l -4.5 -u -2.5 -g 20 -n 100 -c 1.e-11 -f 0.10 -t 1. -p 0 -o chains/run024_prod_N10_f010
and the following for the photon regeneration:
python scan.py -s 0 -e 106 -B 5.3 -w 1064 -N 2000 -l -4.5 -u -2.5 -g 20 -n 100 -c 1.e-11 -f 0.01 -t 1. -p 1 -o chains/run021_N2000_f001
python scan.py -s 0 -e 106 -B 5.3 -w 1064 -N 2000 -l -4.5 -u -2.5 -g 20 -n 100 -c 1.e-11 -f 0.10 -t 1. -p 1 -o chains/run021_N2000_f010
python scan.py -s 0 -e 106 -B 5.3 -w 1064 -N 10 -l -4.5 -u -2.5 -g 20 -n 100 -c 1.e-11 -f 0.01 -t 1. -p 1 -o chains/run021_N10_f001
python scan.py -s 0 -e 106 -B 5.3 -w 1064 -N 10 -l -4.5 -u -2.5 -g 20 -n 100 -c 1.e-11 -f 0.10 -t 1. -p 1 -o chains/run021_N10_f010
It takes about 1-2 hours on a 48 core cluster (Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz
) to finish the run. If the cluster in your physics department is jammed, you can first play with the pickled scan results we create. They can be downloaded from here or by request.
If you find this study useful and/or use this code for your work, please consider citing Seong, Sun, & Yun 2023. The BiBTeX is the following:
@article{Seong:2023ran,
author = "Seong, Hyeonseok and Sun, Chen and Yun, Seokhoon",
title = "{Axion Magnetic Resonance: A Novel Enhancement in Axion-Photon Conversion}",
eprint = "2308.10925",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
reportNumber = "DESY-23-118, LA-UR-23-29378, CTPU-PTC-23-39",
month = "8",
year = "2023"
}