Skip to content

ConnorMallon/GridapODEs.jl

 
 

Repository files navigation

GridapODEs

Stable Dev Build Status Codecov Coveralls

This package provides time integration tools for Gridap. As an example, the following code solves the heat equation.

using Gridap
using ForwardDiff
using GridapODEs.ODETools
using GridapODEs.TransientFETools

import Gridap:import GridapODEs.TransientFETools: ∂t

θ = 0.5

u(x,t) = (1.0-x[1])*x[1]*(1.0-x[2])*x[2]*t
u(t) = x -> u(x,t)

f(t) = x -> ∂t(u)(x,t)-Δ(u(t))(x) # or ∂t(u)(t)(x)-Δ(u(t))(x)

domain = (0,1,0,1)
partition = (4,4)
model = CartesianDiscreteModel(domain,partition)

order = 2

reffe = ReferenceFE(lagrangian,Float64,order)
V0 = FESpace(
  model,
  reffe,
  conformity=:H1, 
  dirichlet_tags="boundary"
)

U = TransientTrialFESpace(V0,u)

Ω = Triangulation(model)
degree = 2*order
dΩ = Measure(Ω,degree)

a(u,v) = ( (v)(u) )dΩ
b(v,t) = ( v*f(t) )dΩ
m(u,v) = ( v*u )dΩ

res(t,u,ut,v) = a(u,v) + m(ut,v) - b(v,t)
jac(t,u,ut,du,v) = a(du,v)
jac_t(t,u,ut,dut,v) = m(dut,v)

op = TransientFEOperator(res,jac,jac_t,U,V0)

t0 = 0.0
tF = 1.0
dt = 0.1

U0 = U(0.0)
uh0 = interpolate_everywhere(u(0.0),U0)

ls = LUSolver()
odes = ThetaMethod(ls,dt,θ)
solver = TransientFESolver(odes)
sol_t = solve(solver,op,uh0,t0,tF)

for (uh_tn, tn) in sol_t
  # Here we have the solution uh_tn at tn
end

About

Time stepping for Gridap

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Julia 100.0%