-
Notifications
You must be signed in to change notification settings - Fork 198
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added CI to test secondary ion emission in RZ.
- Loading branch information
Showing
6 changed files
with
359 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,14 @@ | ||
# Add tests (alphabetical order) ############################################## | ||
# | ||
|
||
if(WarpX_EB) | ||
add_warpx_test( | ||
test_rz_secondary_ion_emission_picmi # name | ||
RZ # dims | ||
1 # nprocs | ||
inputs_test_rz_secondary_ion_emission_picmi.py # inputs | ||
"analysis.py diags/diag1/" # analysis | ||
"analysis_default_regression.py --path diags/diag1/" # checksum | ||
OFF # dependency | ||
) | ||
endif() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,62 @@ | ||
#!/usr/bin/env python | ||
""" | ||
This script tests the last coordinates of the emitted secondary electrons. | ||
The EB sphere is centered on O and has a radius of 0.2. | ||
The proton is initially at: (0,0,-0.25) and moves with a velocity: | ||
(0.1e6,0,1.5e6) with a time step of dt = 0.000000015. | ||
The simulation uses a fixed random seed (np.random.seed(10025015)) | ||
to ensure the emission of secodnary electrons. | ||
An input file inputs_test_rz_secondary_ion_emission_picmi.py is used. | ||
""" | ||
|
||
import sys | ||
|
||
import numpy as np | ||
import yt | ||
from openpmd_viewer import OpenPMDTimeSeries | ||
|
||
yt.funcs.mylog.setLevel(0) | ||
|
||
# Open plotfile specified in command line | ||
filename = sys.argv[1] | ||
ts = OpenPMDTimeSeries(filename) | ||
|
||
it = ts.iterations | ||
x, y, z = ts.get_particle(["x", "y", "z"], species="electrons", iteration=it[-1]) | ||
print("x", x) | ||
print("y", y) | ||
print("z", z) | ||
# Analytical results calculated | ||
x_analytic = [0.004028, 0.003193] | ||
y_analytic = [-0.0001518, -0.0011041] | ||
z_analytic = [-0.19967, -0.19926] | ||
|
||
N_sec_e = np.size(z) # number of the secondary electrons | ||
|
||
assert N_sec_e == 2, ( | ||
"Test did not pass: for this set up we expect 2 secondary electrons emitted" | ||
) | ||
|
||
tolerance = 1e-3 | ||
|
||
for i in range(0, N_sec_e): | ||
print("\n") | ||
print(f"Electron # {i}:") | ||
print("NUMERICAL coordinates of the emitted electrons:") | ||
print("x=%5.5f, y=%5.5f, z=%5.5f" % (x[i], y[i], z[i])) | ||
print("\n") | ||
print("ANALYTICAL coordinates of the point of contact:") | ||
print("x=%5.5f, y=%5.5f, z=%5.5f" % (x_analytic[i], y_analytic[i], z_analytic[i])) | ||
|
||
diff_x = np.abs((x[i] - x_analytic[i]) / x_analytic[i]) | ||
diff_y = np.abs((y[i] - y_analytic[i]) / y_analytic[i]) | ||
diff_z = np.abs((z[i] - z_analytic[i]) / z_analytic[i]) | ||
|
||
print("\n") | ||
print("percentage error for x = %5.4f %%" % (diff_x * 100)) | ||
print("percentage error for y = %5.4f %%" % (diff_y * 100)) | ||
print("percentage error for z = %5.4f %%" % (diff_z * 100)) | ||
|
||
assert (diff_x < tolerance) and (diff_y < tolerance) and (diff_z < tolerance), ( | ||
"Test particle_boundary_interaction did not pass" | ||
) |
1 change: 1 addition & 0 deletions
1
Examples/Tests/secondary_ion_emission/analysis_default_regression.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
../../analysis_default_regression.py |
255 changes: 255 additions & 0 deletions
255
Examples/Tests/secondary_ion_emission/inputs_test_rz_secondary_ion_emission_picmi.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,255 @@ | ||
#!/usr/bin/env python3 | ||
# --- Input file for secondary-ion emission testing in RZ via callback function. | ||
import numpy as np | ||
from scipy.constants import e, elementary_charge, m_e, proton_mass | ||
|
||
from pywarpx import callbacks, particle_containers, picmi | ||
|
||
########################## | ||
# numerics parameters | ||
########################## | ||
|
||
dt = 0.000000015 | ||
|
||
# --- Nb time steps | ||
Te = 0.0259 # in eV | ||
dist_th = np.sqrt(Te * elementary_charge / m_e) | ||
|
||
max_steps = 3 | ||
diagnostic_interval = 1 | ||
|
||
# --- grid | ||
nr = 64 | ||
nz = 64 | ||
|
||
rmin = 0.0 | ||
rmax = 2 | ||
zmin = -2 | ||
zmax = 2 | ||
delta_H = 0.4 | ||
E_HMax = 250 | ||
|
||
np.random.seed(10025015) | ||
########################## | ||
# numerics components | ||
########################## | ||
|
||
grid = picmi.CylindricalGrid( | ||
number_of_cells=[nr, nz], | ||
n_azimuthal_modes=1, | ||
lower_bound=[rmin, zmin], | ||
upper_bound=[rmax, zmax], | ||
lower_boundary_conditions=["none", "dirichlet"], | ||
upper_boundary_conditions=["dirichlet", "dirichlet"], | ||
lower_boundary_conditions_particles=["none", "reflecting"], | ||
upper_boundary_conditions_particles=["absorbing", "reflecting"], | ||
) | ||
|
||
solver = picmi.ElectrostaticSolver( | ||
grid=grid, method="Multigrid", warpx_absolute_tolerance=1e-7 | ||
) | ||
|
||
embedded_boundary = picmi.EmbeddedBoundary( | ||
implicit_function="-(x**2+y**2+z**2-radius**2)", radius=0.2 | ||
) | ||
|
||
########################## | ||
# physics components | ||
########################## | ||
|
||
i_dist = picmi.ParticleListDistribution( | ||
x=0.0, y=0.0, z=-0.25, ux=0.1e6, uy=0.0, uz=1.50e6, weight=1 | ||
) | ||
electrons = picmi.Species( | ||
particle_type="electron", # Specify the particle type | ||
name="electrons", # Name of the species | ||
) | ||
|
||
ions = picmi.Species( | ||
name="ions", | ||
mass=proton_mass, | ||
charge=e, | ||
initial_distribution=i_dist, | ||
warpx_save_particles_at_eb=1, | ||
) | ||
|
||
########################## | ||
# diagnostics | ||
########################## | ||
|
||
field_diag = picmi.FieldDiagnostic( | ||
name="diag1", | ||
grid=grid, | ||
period=diagnostic_interval, | ||
data_list=["Er", "Ez", "phi", "rho"], # , "rho_electrons"], | ||
warpx_format="openpmd", | ||
) | ||
|
||
part_diag = picmi.ParticleDiagnostic( | ||
name="diag1", | ||
period=diagnostic_interval, | ||
species=[ions, electrons], | ||
warpx_format="openpmd", | ||
) | ||
|
||
########################## | ||
# simulation setup | ||
########################## | ||
# num_procs = [1, 1] | ||
# warpx_numprocs=num_procs, | ||
sim = picmi.Simulation( | ||
solver=solver, | ||
time_step_size=dt, | ||
max_steps=max_steps, | ||
warpx_embedded_boundary=embedded_boundary, | ||
warpx_amrex_the_arena_is_managed=1, | ||
) | ||
|
||
sim.add_species( | ||
electrons, | ||
layout=picmi.GriddedLayout(n_macroparticle_per_cell=[0, 0, 0], grid=grid), | ||
) | ||
|
||
sim.add_species( | ||
ions, | ||
layout=picmi.GriddedLayout(n_macroparticle_per_cell=[10, 1, 1], grid=grid), | ||
) | ||
|
||
sim.add_diagnostic(part_diag) | ||
sim.add_diagnostic(field_diag) | ||
|
||
sim.initialize_inputs() | ||
sim.initialize_warpx() | ||
|
||
########################## | ||
# python particle data access | ||
########################## | ||
|
||
|
||
def concat(list_of_arrays): | ||
if len(list_of_arrays) == 0: | ||
# Return a 1d array of size 0 | ||
return np.empty(0) | ||
else: | ||
return np.concatenate(list_of_arrays) | ||
|
||
|
||
def sigma_nascap(energy_kEv, delta_H, E_HMax): | ||
""" | ||
Compute sigma_nascap for each element in the energy array using a loop. | ||
Parameters: | ||
- energy: ndarray or list, energy values in KeV | ||
- delta_H: float, parameter for the formula | ||
- E_HMax: float, parameter for the formula in KeV | ||
Returns: | ||
- numpy array, computed probability sigma_nascap | ||
""" | ||
sigma_nascap = np.array([]) | ||
# Loop through each energy value | ||
for energy in energy_kEv: | ||
if energy > 0.0: | ||
sigma = ( | ||
delta_H | ||
* (E_HMax + 1.0) | ||
/ (E_HMax * 1.0 + energy) | ||
* np.sqrt(energy / 1.0) | ||
) | ||
else: | ||
sigma = 0.0 | ||
sigma_nascap = np.append(sigma_nascap, sigma) | ||
return sigma_nascap | ||
|
||
|
||
def secondary_emission(): | ||
buffer = particle_containers.ParticleBoundaryBufferWrapper() # boundary buffer | ||
# STEP 1: extract the different parameters of the boundary buffer (normal, time, position) | ||
lev = 0 # level 0 (no mesh refinement here) | ||
n = buffer.get_particle_boundary_buffer_size("ions", "eb") | ||
elect_pc = particle_containers.ParticleContainerWrapper("electrons") | ||
|
||
if n != 0: | ||
r = concat(buffer.get_particle_boundary_buffer("ions", "eb", "x", lev)) | ||
theta = concat(buffer.get_particle_boundary_buffer("ions", "eb", "theta", lev)) | ||
z = concat(buffer.get_particle_boundary_buffer("ions", "eb", "z", lev)) | ||
x = r * np.cos(theta) # from RZ coordinates to 3D coordinates | ||
y = r * np.sin(theta) | ||
ux = concat(buffer.get_particle_boundary_buffer("ions", "eb", "ux", lev)) | ||
uy = concat(buffer.get_particle_boundary_buffer("ions", "eb", "uy", lev)) | ||
uz = concat(buffer.get_particle_boundary_buffer("ions", "eb", "uz", lev)) | ||
w = concat(buffer.get_particle_boundary_buffer("ions", "eb", "w", lev)) | ||
nx = concat(buffer.get_particle_boundary_buffer("ions", "eb", "nx", lev)) | ||
ny = concat(buffer.get_particle_boundary_buffer("ions", "eb", "ny", lev)) | ||
nz = concat(buffer.get_particle_boundary_buffer("ions", "eb", "nz", lev)) | ||
delta_t = concat( | ||
buffer.get_particle_boundary_buffer("ions", "eb", "deltaTimeScraped", lev) | ||
) | ||
energy_ions = 0.5 * proton_mass * w * (ux**2 + uy**2 + uz**2) | ||
energy_ions_in_kEv = energy_ions / (1.602176634e-19 * 1000) | ||
sigma_nascap_ions = sigma_nascap(energy_ions_in_kEv, delta_H, E_HMax) | ||
# Loop over all ions in the EB buffer | ||
for i in range(0, n): | ||
sigma = sigma_nascap_ions[i] | ||
sigma_int = int(sigma) | ||
rn = np.random.uniform(sigma_int, sigma_int + 1 + np.finfo(float).eps) | ||
if rn < sigma: | ||
Ne_sec = ( | ||
sigma_int + 1 | ||
) # number of the secondary electrons to be emitted | ||
for j in [0, Ne_sec - 1]: | ||
Check failure Code scanning / CodeQL Suspicious unused loop iteration variable Error
For loop variable 'j' is not used in the loop body.
|
||
xe = np.array([]) | ||
ye = np.array([]) | ||
ze = np.array([]) | ||
we = np.array([]) | ||
delta_te = np.array([]) | ||
uxe = np.array([]) | ||
uye = np.array([]) | ||
uze = np.array([]) | ||
|
||
# Random thermal momenta distribution | ||
ux_th = np.random.normal(0, dist_th) | ||
uy_th = np.random.normal(0, dist_th) | ||
uz_th = np.random.normal(0, dist_th) | ||
|
||
un_th = nx[i] * ux_th + ny[i] * uy_th + nz[i] * uz_th | ||
|
||
if un_th < 0: | ||
ux_th_reflect = ( | ||
-2 * un_th * nx[i] + ux_th | ||
) # for a "mirror reflection" u(sym)=-2(u.n)n+u | ||
uy_th_reflect = -2 * un_th * ny[i] + uy_th | ||
uz_th_reflect = -2 * un_th * nz[i] + uz_th | ||
|
||
uxe = np.append(uxe, ux_th_reflect) | ||
uye = np.append(uye, uy_th_reflect) | ||
uze = np.append(uze, uz_th_reflect) | ||
else: | ||
uxe = np.append(uxe, ux_th) | ||
uye = np.append(uye, uy_th) | ||
uze = np.append(uze, uz_th) | ||
|
||
xe = np.append(xe, x[i]) | ||
ye = np.append(ye, y[i]) | ||
ze = np.append(ze, z[i]) | ||
we = np.append(we, w[i]) | ||
delta_te = np.append(delta_te, delta_t[i]) | ||
|
||
elect_pc.add_particles( | ||
x=xe + (dt - delta_te) * uxe, | ||
y=ye + (dt - delta_te) * uye, | ||
z=ze + (dt - delta_te) * uze, | ||
ux=uxe, | ||
uy=uye, | ||
uz=uze, | ||
w=we, | ||
) | ||
buffer.clear_buffer() # reinitialise the boundary buffer | ||
|
||
|
||
# using the new particle container modified at the last step | ||
callbacks.installafterstep(secondary_emission) | ||
########################## | ||
# simulation run | ||
########################## | ||
sim.step(max_steps) # the whole process is done "max_steps" times |
26 changes: 26 additions & 0 deletions
26
Regression/Checksum/benchmarks_json/test_rz_secondary_ion_emission_picmi.json
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,26 @@ | ||
{ | ||
"electrons": { | ||
"particle_momentum_x": 6.863524723051401e-26, | ||
"particle_momentum_y": 1.0324224192517369e-25, | ||
"particle_momentum_z": 5.621885683115495e-26, | ||
"particle_position_x": 0.0072217326490580675, | ||
"particle_position_y": 0.001255871169011761, | ||
"particle_position_z": 0.39892796754417836, | ||
"particle_weight": 2.0 | ||
}, | ||
"ions": { | ||
"particle_momentum_x": 0.0, | ||
"particle_momentum_y": 0.0, | ||
"particle_momentum_z": 0.0, | ||
"particle_position_x": 0.0, | ||
"particle_position_y": 0.0, | ||
"particle_position_z": 0.0, | ||
"particle_weight": 0.0 | ||
}, | ||
"lev=0": { | ||
"Er": 3.996898574068735e-08, | ||
"Ez": 3.77948124311196e-08, | ||
"phi": 2.359076749421693e-08, | ||
"rho": 4.6171309216540875e-15 | ||
} | ||
} |