Skip to content

Latest commit

 

History

History
155 lines (134 loc) · 6.2 KB

README.org

File metadata and controls

155 lines (134 loc) · 6.2 KB

机器学习笔记

这个笔记是我个人在学习机器学习过程中的学习记录。其中有大量前人的总结成果,但此词条并不简单的重复 摘抄,而是我在学习中选择性地参考了不同资料的不同部分,自己学习的理解与总结。原词条都有相关链接, 请自行跳转。

一些其他有用的东西:

  • 数据科学领域速查表
  • 文献阅读总结:有监督的二分类学习算法的经验比较
  • 文献阅读总结:Fern´andez-Delgado2014. 对比了17种分类算法的197种实现,最优秀的是随机森林。
  • 这里比较了sklearn的不同分类器 代码如下:
    print(__doc__)
    
    
    # Code source: Gaël Varoquaux
    #              Andreas Müller
    # Modified for documentation by Jaques Grobler
    # License: BSD 3 clause
    
    import numpy as np
    import matplotlib.pyplot as plt
    from matplotlib.colors import ListedColormap
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler
    from sklearn.datasets import make_moons, make_circles, make_classification
    from sklearn.neural_network import MLPClassifier
    from sklearn.neighbors import KNeighborsClassifier
    from sklearn.svm import SVC
    from sklearn.gaussian_process import GaussianProcessClassifier
    from sklearn.gaussian_process.kernels import RBF
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
    from sklearn.naive_bayes import GaussianNB
    from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
    
    help(SVC.score)
    exit(0)
    
    h = .02  # step size in the mesh
    
    names = ["Nearest Neighbors", "Linear SVM", "RBF SVM", "Gaussian Process",
             "Decision Tree", "Random Forest", "Neural Net", "AdaBoost",
             "Naive Bayes", "QDA"]
    
    classifiers = [
        KNeighborsClassifier(3),
        SVC(kernel="linear", C=0.025),
        SVC(gamma=2, C=1),
        GaussianProcessClassifier(1.0 * RBF(1.0)),
        DecisionTreeClassifier(max_depth=5),
        RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1),
        MLPClassifier(alpha=1, max_iter=1000),
        AdaBoostClassifier(),
        GaussianNB(),
        QuadraticDiscriminantAnalysis()]
    
    X, y = make_classification(n_features=2, n_redundant=0, n_informative=2,
                               random_state=1, n_clusters_per_class=1)
    rng = np.random.RandomState(2)
    X += 2 * rng.uniform(size=X.shape)
    linearly_separable = (X, y)
    
    datasets = [make_moons(noise=0.3, random_state=0),
                make_circles(noise=0.2, factor=0.5, random_state=1),
                linearly_separable
                ]
    
    figure = plt.figure(figsize=(27, 9))
    i = 1
    # iterate over datasets
    for ds_cnt, ds in enumerate(datasets):
        # preprocess dataset, split into training and test part
        X, y = ds
        X = StandardScaler().fit_transform(X)
        X_train, X_test, y_train, y_test = \
            train_test_split(X, y, test_size=.4, random_state=42)
    
        x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
        y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
        xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                             np.arange(y_min, y_max, h))
    
        # just plot the dataset first
        cm = plt.cm.RdBu
        cm_bright = ListedColormap(['#FF0000', '#0000FF'])
        ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
        if ds_cnt == 0:
            ax.set_title("Input data")
        # Plot the training points
        ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright,
                   edgecolors='k')
        # Plot the testing points
        ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6,
                   edgecolors='k')
        ax.set_xlim(xx.min(), xx.max())
        ax.set_ylim(yy.min(), yy.max())
        ax.set_xticks(())
        ax.set_yticks(())
        i += 1
    
        # iterate over classifiers
        for name, clf in zip(names, classifiers):
            ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
            clf.fit(X_train, y_train)
            score = clf.score(X_test, y_test)
    
            # Plot the decision boundary. For that, we will assign a color to each
            # point in the mesh [x_min, x_max]x[y_min, y_max].
            if hasattr(clf, "decision_function"):
                Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
            else:
                Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]
    
            # Put the result into a color plot
            Z = Z.reshape(xx.shape)
            ax.contourf(xx, yy, Z, cmap=cm, alpha=.8)
    
            # Plot the training points
            ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright,
                       edgecolors='k')
            # Plot the testing points
            ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright,
                       edgecolors='k', alpha=0.6)
    
            ax.set_xlim(xx.min(), xx.max())
            ax.set_ylim(yy.min(), yy.max())
            ax.set_xticks(())
            ax.set_yticks(())
            if ds_cnt == 0:
                ax.set_title(name)
            ax.text(xx.max() - .3, yy.min() + .3, ('%.2f' % score).lstrip('0'),
                    size=15, horizontalalignment='right')
            i += 1
    
    plt.tight_layout()
    plt.show()