-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #1069 from NNPDF/final_feature_scaling
Final feature scaling
- Loading branch information
Showing
10 changed files
with
406 additions
and
109 deletions.
There are no files selected for viewing
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,113 @@ | ||
# | ||
# Configuration file for n3fit | ||
# | ||
|
||
############################################################ | ||
description: Basic feature scaling | ||
|
||
############################################################ | ||
# frac: training fraction | ||
# ewk: apply ewk k-factors | ||
# sys: systematics treatment (see systypes) | ||
dataset_inputs: | ||
- { dataset: SLACP, frac: 0.5} | ||
- { dataset: NMCPD, frac: 0.5 } | ||
- { dataset: CMSJETS11, frac: 0.5, sys: 10 } | ||
|
||
############################################################ | ||
datacuts: | ||
t0pdfset : NNPDF31_nlo_as_0118 # PDF set to generate t0 covmat | ||
q2min : 3.49 # Q2 minimum | ||
w2min : 12.5 # W2 minimum | ||
combocuts : NNPDF31 # NNPDF3.0 final kin. cuts | ||
jetptcut_tev : 0 # jet pt cut for tevatron | ||
jetptcut_lhc : 0 # jet pt cut for lhc | ||
wptcut_lhc : 30.0 # Minimum pT for W pT diff distributions | ||
jetycut_tev : 1e30 # jet rap. cut for tevatron | ||
jetycut_lhc : 1e30 # jet rap. cut for lhc | ||
dymasscut_min: 0 # dy inv.mass. min cut | ||
dymasscut_max: 1e30 # dy inv.mass. max cut | ||
jetcfactcut : 1e30 # jet cfact. cut | ||
|
||
############################################################ | ||
theory: | ||
theoryid: 53 # database id | ||
|
||
############################################################ | ||
fitting: | ||
trvlseed: 1 | ||
nnseed: 2 | ||
mcseed: 3 | ||
epochs: 900 | ||
save: 'weights.h5' | ||
# load: '/path/to/weights.h5/file' | ||
|
||
|
||
tensorboard: | ||
weight_freq: 100 | ||
profiling: False | ||
|
||
genrep : True # true = generate MC replicas, false = use real data | ||
|
||
parameters: # This defines the parameter dictionary that is passed to the Model Trainer | ||
nodes_per_layer: [15, 10, 8] | ||
activation_per_layer: ['sigmoid', 'sigmoid', 'linear'] | ||
initializer: 'glorot_normal' | ||
optimizer: | ||
optimizer_name: 'RMSprop' | ||
learning_rate: 0.01 | ||
clipnorm: 1.0 | ||
epochs: 900 | ||
positivity: | ||
multiplier: 1.05 # When any of the multiplier and/or the initial is not set | ||
initial: # the poslambda will be used instead to compute these values per dataset | ||
threshold: 1e-5 | ||
stopping_patience: 0.30 # percentage of the number of epochs | ||
layer_type: 'dense' | ||
dropout: 0.0 | ||
interpolation_points: 40 | ||
threshold_chi2: 5.0 | ||
|
||
# NN23(QED) = sng=0,g=1,v=2,t3=3,ds=4,sp=5,sm=6,(pht=7) | ||
# EVOL(QED) = sng=0,g=1,v=2,v3=3,v8=4,t3=5,t8=6,(pht=7) | ||
# EVOLS(QED)= sng=0,g=1,v=2,v8=4,t3=4,t8=5,ds=6,(pht=7) | ||
# FLVR(QED) = g=0, u=1, ubar=2, d=3, dbar=4, s=5, sbar=6, (pht=7) | ||
fitbasis: NN31IC # EVOL (7), EVOLQED (8), etc. | ||
basis: | ||
# remeber to change the name of PDF accordingly with fitbasis | ||
# pos: True for NN squared | ||
# mutsize: mutation size | ||
# mutprob: mutation probability | ||
# smallx, largex: preprocessing ranges | ||
- { fl: sng, pos: False, mutsize: [15], mutprob: [0.05], smallx: [1.05,1.19], largex: [1.47,2.70], trainable: False } | ||
- { fl: g, pos: False, mutsize: [15], mutprob: [0.05], smallx: [0.94,1.25], largex: [0.11,5.87], trainable: False } | ||
- { fl: v, pos: False, mutsize: [15], mutprob: [0.05], smallx: [0.54,0.75], largex: [1.15,2.76], trainable: False } | ||
- { fl: v3, pos: False, mutsize: [15], mutprob: [0.05], smallx: [0.21,0.57], largex: [1.35,3.08] } | ||
- { fl: v8, pos: False, mutsize: [15], mutprob: [0.05], smallx: [0.52,0.76], largex: [0.77,3.56], trainable: True } | ||
- { fl: t3, pos: False, mutsize: [15], mutprob: [0.05], smallx: [-0.37,1.52], largex: [1.74,3.39] } | ||
- { fl: t8, pos: False, mutsize: [15], mutprob: [0.05], smallx: [0.56,1.29], largex: [1.45,3.03] } | ||
- { fl: cp, pos: False, mutsize: [15], mutprob: [0.05], smallx: [0.12,1.19], largex: [1.83,6.70] } | ||
|
||
############################################################ | ||
positivity: | ||
posdatasets: | ||
- { dataset: POSF2U, poslambda: 1e6 } # Positivity Lagrange Multiplier | ||
- { dataset: POSFLL, poslambda: 1e4 } | ||
|
||
############################################################ | ||
integrability: | ||
integdatasets: | ||
- {dataset: INTEGXT3, poslambda: 1e2} | ||
|
||
############################################################ | ||
lhagrid: | ||
nx : 150 | ||
xmin: 1e-9 | ||
xmed: 0.1 | ||
xmax: 1.0 | ||
nq : 50 | ||
qmax: 1e5 | ||
|
||
############################################################ | ||
debug: True | ||
maxcores: 8 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.