Skip to content

Commit

Permalink
Added example runcard for contamination studies
Browse files Browse the repository at this point in the history
  • Loading branch information
James Moore committed Oct 10, 2023
1 parent 0b00ae5 commit 849888f
Showing 1 changed file with 125 additions and 0 deletions.
125 changes: 125 additions & 0 deletions n3fit/runcards/examples/simunet_examples/example_contamination.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,125 @@
############################################################
description: "Runcard template for the new (more flexible) contaminated fits. This one sets up a fit with contaminated pseudodata when we run the vp-contaminate script. We can then run n3fit as normal."

############################################################
dataset_inputs:
- {dataset: NMC, frac: 0.75}
- {dataset: ATLASTTBARTOT7TEV, cfac: [QCD], contamination: 'EFT-LO'}
- {dataset: ATLAS_TOPDIFF_DILEPT_8TEV_TTMNORM, cfac: [QCD], contamination: 'EFT-LO'}
- {dataset: ATLAS_TTBAR_8TEV_ASY, cfac: [QCD], contamination: 'EFT-LO'}
- {dataset: ATLAS_SINGLETOPW_8TEV_TOTAL, use_fixed_predictions: True, contamination: 'EFT-LO'}

fixed_pdf_fit: False
# load_weights_from_fit: 221103-jmm-no_top_1000_iterated # If this is uncommented, training starts here.

###########################################################
# The closure test namespace tells us the settings for the
# (possible contaminated) closure test.
############################################################
closuretest:
filterseed: 0 # Random seed to be used in filtering data partitions
fakedata: true # true = to use FAKEPDF to generate pseudo-data
fakepdf: NNPDF40_nlo_as_01180 # Theory input for pseudo-data
errorsize: 1.0 # uncertainties rescaling
fakenoise: true # true = to add random fluctuations to pseudo-data
rancutprob: 1.0 # Fraction of data to be included in the fit
rancutmethod: 0 # Method to select rancutprob data fraction
rancuttrnval: false # 0(1) to output training(valiation) chi2 in report
printpdf4gen: false # To print info on PDFs during minimization
contamination_parameters:
- {name: 'OtG', value: 0.01}
- {name: 'Opt', value: 0.02}

seed: 0
rngalgo: 0
############################################################
datacuts:
t0pdfset: NNPDF40_nlo_as_01180 # PDF set to generate t0 covmat
q2min: 3.49 # Q2 minimum
w2min: 12.5 # W2 minimum

############################################################
theory:
theoryid: 200 # database id

############################################################
trvlseed: 475038818
nnseed: 2394641471
mcseed: 1831662593
save: "weights.h5"
genrep: true # true = generate MC replicas, false = use real data

############################################################


parameters: # This defines the parameter dictionary that is passed to the Model Trainer
nodes_per_layer: [25, 20, 8]
activation_per_layer: [tanh, tanh, linear]
initializer: glorot_normal
optimizer:
clipnorm: 6.073e-6
learning_rate: 2.621e-3
optimizer_name: Nadam
epochs: 30000
positivity:
initial: 184.8
multiplier:
integrability:
initial: 184.8
multiplier:
stopping_patience: 0.2
layer_type: dense
dropout: 0.0
threshold_chi2: 3.5

fitting:
# EVOL(QED) = sng=0,g=1,v=2,v3=3,v8=4,t3=5,t8=6,(pht=7)
# EVOLS(QED)= sng=0,g=1,v=2,v8=4,t3=4,t8=5,ds=6,(pht=7)
# FLVR(QED) = g=0, u=1, ubar=2, d=3, dbar=4, s=5, sbar=6, (pht=7)
fitbasis: EVOL # EVOL (7), EVOLQED (8), etc.
basis:
- {fl: sng, pos: false, trainable: false, mutsize: [15], mutprob: [0.05], smallx: [
1.093, 1.121], largex: [1.486, 3.287]}
- {fl: g, pos: false, trainable: false, mutsize: [15], mutprob: [0.05], smallx: [
0.8329, 1.071], largex: [3.084, 6.767]}
- {fl: v, pos: false, trainable: false, mutsize: [15], mutprob: [0.05], smallx: [
0.5202, 0.7431], largex: [1.556, 3.639]}
- {fl: v3, pos: false, trainable: false, mutsize: [15], mutprob: [0.05], smallx: [
0.1205, 0.4839], largex: [1.736, 3.622]}
- {fl: v8, pos: false, trainable: false, mutsize: [15], mutprob: [0.05], smallx: [
0.5864, 0.7987], largex: [1.559, 3.569]}
- {fl: t3, pos: false, trainable: false, mutsize: [15], mutprob: [0.05], smallx: [
-0.5019, 1.126], largex: [1.754, 3.479]}
- {fl: t8, pos: false, trainable: false, mutsize: [15], mutprob: [0.05], smallx: [
0.6305, 0.8806], largex: [1.544, 3.481]}
- {fl: t15, pos: false, trainable: false, mutsize: [15], mutprob: [0.05], smallx: [
1.087, 1.139], largex: [1.48, 3.365]}

############################################################
positivity:
posdatasets:
- {dataset: POSF2U, maxlambda: 1e6} # Positivity Lagrange Multiplier
- {dataset: POSF2DW, maxlambda: 1e6}
- {dataset: POSF2S, maxlambda: 1e6}
- {dataset: POSFLL, maxlambda: 1e6}
- {dataset: POSDYU, maxlambda: 1e10}
- {dataset: POSDYD, maxlambda: 1e10}
- {dataset: POSDYS, maxlambda: 1e10}
- {dataset: POSF2C, maxlambda: 1e6}
- {dataset: POSXUQ, maxlambda: 1e6} # Positivity of MSbar PDFs
- {dataset: POSXUB, maxlambda: 1e6}
- {dataset: POSXDQ, maxlambda: 1e6}
- {dataset: POSXDB, maxlambda: 1e6}
- {dataset: POSXSQ, maxlambda: 1e6}
- {dataset: POSXSB, maxlambda: 1e6}
- {dataset: POSXGL, maxlambda: 1e6}

############################################################
integrability:
integdatasets:
- {dataset: INTEGXT8, maxlambda: 1e2}
- {dataset: INTEGXT3, maxlambda: 1e2}

############################################################
debug: false
maxcores: 4

0 comments on commit 849888f

Please sign in to comment.