Skip to content

Commit

Permalink
Merge pull request #37 from Hyedryn/restricted_DTI
Browse files Browse the repository at this point in the history
Limiting DTI to b=2000
  • Loading branch information
DelinteNicolas authored Feb 28, 2024
2 parents 4229649 + bc33beb commit 240647f
Show file tree
Hide file tree
Showing 2 changed files with 29 additions and 9 deletions.
13 changes: 9 additions & 4 deletions elikopy/core.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,8 @@


def dicom_to_nifti(folder_path):
""" Convert dicom data into compressed nifti. Converted dicoms are then moved to a sub-folder named original_data.
""" Convert dicom data into compressed nifti. Converted dicoms are then
moved to a sub-folder named original_data.
The niftis are named patientID_ProtocolName_SequenceName.
:param folder_path: Path to root folder containing all the dicoms
Expand Down Expand Up @@ -653,14 +654,18 @@ def preproc(self, folder_path=None, reslice=False, reslice_addSlice=False, denoi
f.write("["+log_prefix+"] " + datetime.datetime.now().strftime("%d.%b %Y %H:%M:%S") + ": All the preprocessing operation are finished!\n")
f.close()

def dti(self,folder_path=None, patient_list_m=None, maskType="brain_mask_dilated", slurm=None, slurm_email=None, slurm_timeout=None, slurm_cpus=None, slurm_mem=None):
def dti(self,folder_path=None, patient_list_m=None, maskType="brain_mask_dilated", use_all_shells: bool = False,
slurm=None, slurm_email=None, slurm_timeout=None, slurm_cpus=None, slurm_mem=None):
"""Computes the DTI metrics for each subject using Weighted Least-Squares. The outputs are available in the directories <folder_path>/subjects/<subjects_ID>/dMRI/dti/.
example : study.dti()
:param folder_path: the path to the root directory. default=study_folder
:param patient_list_m: Define a subset of subjects to process instead of all the available subjects. example : ['patientID1','patientID2','patientID3']. default=None
:param maskType: Define which mask to use during processing. default="brain_mask_dilated"
:param use_all_shells: Boolean. DTI will use all shells available, not just
shells <= 2000, this will cause a more defined white matter at the cost of
an erronous estimation of the CSF. The default is False.
:param slurm: Whether to use the Slurm Workload Manager or not (for computer clusters). default=value_during_init
:param slurm_email: Email adress to send notification if a task fails. default=None
:param slurm_timeout: Replace the default slurm timeout of 1h by a custom timeout.
Expand Down Expand Up @@ -697,7 +702,7 @@ def dti(self,folder_path=None, patient_list_m=None, maskType="brain_mask_dilated

if slurm:
p_job = {
"wrap": "python -c 'from elikopy.individual_subject_processing import dti_solo; dti_solo(\"" + folder_path + "/\",\"" + p + "\",maskType=\"" + str(maskType) + "\")'",
"wrap": "python -c 'from elikopy.individual_subject_processing import dti_solo; dti_solo(\"" + folder_path + "/\",\"" + p + "\",maskType=\"" + str(maskType) + "\", use_all_shells=" + str(use_all_shells) +")'",
"job_name": "dti_" + p,
"ntasks": 1,
"cpus_per_task": 1,
Expand All @@ -719,7 +724,7 @@ def dti(self,folder_path=None, patient_list_m=None, maskType="brain_mask_dilated
f.write("["+log_prefix+"] " + datetime.datetime.now().strftime("%d.%b %Y %H:%M:%S") + ": Patient %s is ready to be processed\n" % p)
f.write("["+log_prefix+"] " + datetime.datetime.now().strftime("%d.%b %Y %H:%M:%S") + ": Successfully submited job %s using slurm\n" % p_job_id)
else:
dti_solo(folder_path + "/",p,maskType=maskType)
dti_solo(folder_path + "/",p,maskType=maskType,use_all_shells=use_all_shells)
matplotlib.pyplot.close(fig='all')
f.write("["+log_prefix+"] " + datetime.datetime.now().strftime("%d.%b %Y %H:%M:%S") + ": Successfully applied DTI on patient %s\n" % p)
f.flush()
Expand Down
25 changes: 20 additions & 5 deletions elikopy/individual_subject_processing.py
Original file line number Diff line number Diff line change
Expand Up @@ -629,7 +629,7 @@ def preproc_solo(folder_path, p, reslice=False, reslice_addSlice=False, denoisin
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import dipy.reconst.dti as dti
from dipy.align.imaffine import (AffineMap, MutualInformationMetric, AffineRegistration)
from dipy.align.imaffine import MutualInformationMetric, AffineRegistration
from dipy.align.transforms import RigidTransform3D
from dipy.segment.mask import segment_from_cfa
from dipy.segment.mask import bounding_box
Expand Down Expand Up @@ -1385,13 +1385,19 @@ def print_page(self, images):
f.close()


def dti_solo(folder_path, p, maskType="brain_mask_dilated", report=True):
def dti_solo(folder_path, p, maskType="brain_mask_dilated",
use_all_shells: bool = False, report=True):
"""
Computes the DTI metrics for a single subject. The outputs are available in the directories <folder_path>/subjects/<subjects_ID>/dMRI/dti/.
Computes the DTI metrics for a single subject. The outputs are available in
the directories <folder_path>/subjects/<subjects_ID>/dMRI/dti/.
:param folder_path: the path to the root directory.
:param p: The name of the patient.
:param use_wm_mask: If true a white matter mask is used. The white_matter() function needs to already be applied. default=False
:param use_wm_mask: If true a white matter mask is used. The white_matter()
function needs to already be applied. default=False
:param use_all_shells: Boolean. DTI will use all shells available, not just
shells <= 2000, this will cause a more defined white matter at the cost of
an erronous estimation of the CSF. The default is False.
"""
log_prefix = "DTI SOLO"
print("[" + log_prefix + "] " + datetime.datetime.now().strftime(
Expand Down Expand Up @@ -1424,10 +1430,19 @@ def dti_solo(folder_path, p, maskType="brain_mask_dilated", report=True):
bvals, bvecs = read_bvals_bvecs(
folder_path + '/subjects/' + patient_path + '/dMRI/preproc/' + patient_path + "_dmri_preproc.bval",
folder_path + '/subjects/' + patient_path + '/dMRI/preproc/' + patient_path + "_dmri_preproc.bvec")
# Remove shells >2000================================
if not use_all_shells:
indexes = np.argwhere(bvals < 2000+10)
indexes = indexes.squeeze()
bvals = bvals[indexes]
bvecs = bvecs[indexes]
data = data[..., indexes]
print('Warning: removing shells above b=2000 for DTI. To disable this, '
+ 'activate the use_all_shells option.')
# create the model===================================
b0_threshold = np.min(bvals)+10
b0_threshold = max(50, b0_threshold)
gtab = gradient_table(bvals, bvecs,b0_threshold=b0_threshold)
gtab = gradient_table(bvals, bvecs, b0_threshold=b0_threshold)
tenmodel = dti.TensorModel(gtab)
tenfit = tenmodel.fit(data, mask=mask)
# FA ================================================
Expand Down

0 comments on commit 240647f

Please sign in to comment.