Skip to content

Commit

Permalink
Merge pull request Pyomo#3402 from emma58/lp-dual
Browse files Browse the repository at this point in the history
Adding (parameterized) linear programming dual transformation!
  • Loading branch information
blnicho authored Nov 15, 2024
2 parents 05c5ff2 + aa5e6d0 commit f520b2a
Show file tree
Hide file tree
Showing 9 changed files with 1,623 additions and 18 deletions.
20 changes: 2 additions & 18 deletions pyomo/contrib/fme/fourier_motzkin_elimination.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,7 @@
from pyomo.repn.standard_repn import generate_standard_repn
from pyomo.common.collections import ComponentMap, ComponentSet
from pyomo.opt import TerminationCondition
from pyomo.util.config_domains import ComponentDataSet

import logging

Expand Down Expand Up @@ -57,23 +58,6 @@ def _check_var_bounds_filter(constraint):
return True


def vars_to_eliminate_list(x):
if isinstance(x, (Var, VarData)):
if not x.is_indexed():
return ComponentSet([x])
ans = ComponentSet()
for j in x.index_set():
ans.add(x[j])
return ans
elif hasattr(x, '__iter__'):
ans = ComponentSet()
for i in x:
ans.update(vars_to_eliminate_list(i))
return ans
else:
raise ValueError("Expected Var or list of Vars.\n\tReceived %s" % type(x))


def gcd(a, b):
while b != 0:
a, b = b, a % b
Expand Down Expand Up @@ -111,7 +95,7 @@ class Fourier_Motzkin_Elimination_Transformation(Transformation):
'vars_to_eliminate',
ConfigValue(
default=None,
domain=vars_to_eliminate_list,
domain=ComponentDataSet(Var),
description="Continuous variable or list of continuous variables to "
"project out of the model",
doc="""
Expand Down
1 change: 1 addition & 0 deletions pyomo/core/plugins/transform/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,4 +22,5 @@
add_slack_vars,
scaling,
logical_to_linear,
lp_dual,
)
260 changes: 260 additions & 0 deletions pyomo/core/plugins/transform/lp_dual.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,260 @@
# ___________________________________________________________________________
#
# Pyomo: Python Optimization Modeling Objects
# Copyright (c) 2008-2024
# National Technology and Engineering Solutions of Sandia, LLC
# Under the terms of Contract DE-NA0003525 with National Technology and
# Engineering Solutions of Sandia, LLC, the U.S. Government retains certain
# rights in this software.
# This software is distributed under the 3-clause BSD License.
# ___________________________________________________________________________

from pyomo.common.autoslots import AutoSlots
from pyomo.common.collections import ComponentMap
from pyomo.common.config import ConfigDict, ConfigValue
from pyomo.common.dependencies import scipy
from pyomo.core import (
ConcreteModel,
Block,
Var,
Constraint,
Objective,
TransformationFactory,
NonNegativeReals,
NonPositiveReals,
maximize,
minimize,
Reals,
)
from pyomo.opt import WriterFactory
from pyomo.repn.standard_repn import isclose_const
from pyomo.util.config_domains import ComponentDataSet


class _LPDualData(AutoSlots.Mixin):
__slots__ = ('primal_var', 'dual_var', 'primal_constraint', 'dual_constraint')

def __init__(self):
self.primal_var = {}
self.dual_var = {}
self.primal_constraint = ComponentMap()
self.dual_constraint = ComponentMap()


Block.register_private_data_initializer(_LPDualData)


@TransformationFactory.register(
'core.lp_dual', 'Generate the linear programming dual of the given model'
)
class LinearProgrammingDual(object):
CONFIG = ConfigDict("core.lp_dual")
CONFIG.declare(
'parameterize_wrt',
ConfigValue(
default=None,
domain=ComponentDataSet(Var),
description="Vars to treat as data for the purposes of taking the dual",
doc="""
Optional list of Vars to be treated as data while taking the LP dual.
For example, if this is the dual of the inner problem in a multilevel
optimization problem, then the outer problem's Vars would be specified
in this list since they are not variables from the perspective of the
inner problem.
""",
),
)

def apply_to(self, model, **options):
raise NotImplementedError(
"The 'core.lp_dual' transformation does not implement "
"apply_to since it is ambiguous what it means to take a dual "
"in place. Please use 'create_using' and do what you wish with the "
"returned model."
)

def create_using(self, model, ostream=None, **kwds):
"""Take linear programming dual of a model
Returns
-------
ConcreteModel containing linear programming dual
Parameters
----------
model: ConcreteModel
The concrete Pyomo model to take the dual of
ostream: None
This is provided for API compatibility with other writers
and is ignored here.
"""
config = self.CONFIG(kwds.pop('options', {}))
config.set_value(kwds)

if config.parameterize_wrt is None:
std_form = WriterFactory('compile_standard_form').write(
model, mixed_form=True, set_sense=None
)
else:
std_form = WriterFactory('compile_parameterized_standard_form').write(
model, wrt=config.parameterize_wrt, mixed_form=True, set_sense=None
)
return self._take_dual(model, std_form)

def _take_dual(self, model, std_form):
if len(std_form.objectives) != 1:
raise ValueError(
"Model '%s' has no objective or multiple active objectives. Can "
"only take dual with exactly one active objective!" % model.name
)
primal_sense = std_form.objectives[0].sense

dual = ConcreteModel(name="%s dual" % model.name)
# This is a csc matrix, so we'll skip transposing and just work off
# of the columns
A = std_form.A
c = std_form.c.todense().ravel()
dual_rows = range(A.shape[1])
dual_cols = range(A.shape[0])
dual.x = Var(dual_cols, domain=NonNegativeReals)
trans_info = dual.private_data()
for j, (primal_cons, ineq) in enumerate(std_form.rows):
# maximize is -1 and minimize is +1 and ineq is +1 for <= and -1 for
# >=, so we need to change domain to NonPositiveReals if the product
# of these is +1.
if primal_sense * ineq == 1:
dual.x[j].domain = NonPositiveReals
elif ineq == 0:
# equality
dual.x[j].domain = Reals
trans_info.primal_constraint[dual.x[j]] = primal_cons
trans_info.dual_var[primal_cons] = dual.x[j]

dual.constraints = Constraint(dual_rows)
for i, primal in enumerate(std_form.columns):
lhs = 0
for j in range(A.indptr[i], A.indptr[i + 1]):
coef = A.data[j]
primal_row = A.indices[j]
lhs += coef * dual.x[primal_row]

if primal.domain is Reals:
dual.constraints[i] = lhs == c[i]
elif primal_sense is minimize:
if primal.domain is NonNegativeReals:
dual.constraints[i] = lhs <= c[i]
else: # primal.domain is NonPositiveReals
dual.constraints[i] = lhs >= c[i]
else:
if primal.domain is NonNegativeReals:
dual.constraints[i] = lhs >= c[i]
else: # primal.domain is NonPositiveReals
dual.constraints[i] = lhs <= c[i]
trans_info.dual_constraint[primal] = dual.constraints[i]
trans_info.primal_var[dual.constraints[i]] = primal

dual.obj = Objective(
expr=sum(std_form.rhs[j] * dual.x[j] for j in dual_cols),
sense=-primal_sense,
)

return dual

def get_primal_constraint(self, model, dual_var):
"""Return the primal constraint corresponding to 'dual_var'
Returns
-------
Constraint
Parameters
----------
model: ConcreteModel
A dual model returned from the 'core.lp_dual' transformation
dual_var: Var
A dual variable on 'model'
"""
primal_constraint = model.private_data().primal_constraint
if dual_var in primal_constraint:
return primal_constraint[dual_var]
else:
raise ValueError(
"It does not appear that Var '%s' is a dual variable on model '%s'"
% (dual_var.name, model.name)
)

def get_dual_constraint(self, model, primal_var):
"""Return the dual constraint corresponding to 'primal_var'
Returns
-------
Constraint
Parameters
----------
model: ConcreteModel
A primal model passed as an argument to the 'core.lp_dual' transformation
primal_var: Var
A primal variable on 'model'
"""
dual_constraint = model.private_data().dual_constraint
if primal_var in dual_constraint:
return dual_constraint[primal_var]
else:
raise ValueError(
"It does not appear that Var '%s' is a primal variable on model '%s'"
% (primal_var.name, model.name)
)

def get_primal_var(self, model, dual_constraint):
"""Return the primal variable corresponding to 'dual_constraint'
Returns
-------
Var
Parameters
----------
model: ConcreteModel
A dual model returned from the 'core.lp_dual' transformation
dual_constraint: Constraint
A constraint on 'model'
"""
primal_var = model.private_data().primal_var
if dual_constraint in primal_var:
return primal_var[dual_constraint]
else:
raise ValueError(
"It does not appear that Constraint '%s' is a dual constraint on "
"model '%s'" % (dual_constraint.name, model.name)
)

def get_dual_var(self, model, primal_constraint):
"""Return the dual variable corresponding to 'primal_constraint'
Returns
-------
Var
Parameters
----------
model: ConcreteModel
A primal model passed as an argument to the 'core.lp_dual' transformation
primal_constraint: Constraint
A constraint on 'model'
"""
dual_var = model.private_data().dual_var
if primal_constraint in dual_var:
return dual_var[primal_constraint]
else:
raise ValueError(
"It does not appear that Constraint '%s' is a primal constraint on "
"model '%s'" % (primal_constraint.name, model.name)
)
Loading

0 comments on commit f520b2a

Please sign in to comment.