Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[ITensorMPS] Added option for MPO-MPS zipup #1536

Closed
wants to merge 10 commits into from
45 changes: 33 additions & 12 deletions src/lib/ITensorMPS/src/mpo.jl
Original file line number Diff line number Diff line change
Expand Up @@ -629,6 +629,24 @@ function ITensors.contract(A::MPO, ψ::MPS; alg=nothing, method=alg, kwargs...)
return contract(Algorithm(alg), A, ψ; kwargs...)
end

function zipup_docstring(isMPOMPO::Bool)::String
rhsTypeString = isMPOMPO ? "MPO" : "MPS"
rhsString = isMPOMPO ? "B" : "ψ"
return """ - "zipup": The MPO and $rhsTypeString tensors are contracted then truncated at each site without enforcing
the appropriate orthogonal gauge. Once this sweep is complete a call to `truncate!` occurs.
Because the initial truncation is not locally optimal it is recommended to use a loose
`cutoff` and `maxdim` and then pass the desired truncation parameters to the locally optimal
`truncate!` sweep via the additional keyword argument `truncate_kwargs`.
A set of parameters suggested in [^Paeckel2019] is
`contract(A, $rhsString; method="zipup", cutoff=cutoff / 10, maxdim=2 * maxdim, truncate_kwargs=(; cutoff, maxdim))`."""
end

function Paeckel2019_citation_docstring()::String
return """
[^Paeckel2019]: Time-evolution methods for matrix-product states. Sebastian Paeckel et al. [arXiv:1901.05824](https://arxiv.org/abs/1901.05824)
"""
end

contract_mpo_mps_doc = """
contract(ψ::MPS, A::MPO; kwargs...) -> MPS
*(::MPS, ::MPO; kwargs...) -> MPS
Expand Down Expand Up @@ -662,13 +680,15 @@ Choose the method with the `method` keyword, for example
- `mindim::Int=1`: the minimal bond dimension of the resulting MPS.
- `normalize::Bool=false`: whether or not to normalize the resulting MPS.
- `method::String="densitymatrix"`: the algorithm to use for the contraction.
Currently the options are "densitymatrix", where the network formed by the
MPO and MPS is squared and contracted down to a density matrix which is
diagonalized iteratively at each site, and "naive", where the MPO and MPS
tensor are contracted exactly at each site and then a truncation of the
resulting MPS is performed.
- "densitymatrix": The network formed by the MPO and MPS is squared and contracted down to
a density matrix which is diagonalized iteratively at each site.
- "naive": The MPO and MPS tensor are contracted exactly at each site and then a truncation
of the resulting MPS is performed.
$(zipup_docstring(false))

See also [`apply`](@ref).

$(Paeckel2019_citation_docstring())
"""

@doc """
Expand Down Expand Up @@ -822,10 +842,11 @@ end
function ITensors.contract(
::Algorithm"zipup",
A::MPO,
B::MPO;
B::AbstractMPS;
cutoff=1e-14,
maxdim=maxlinkdim(A) * maxlinkdim(B),
mindim=1,
truncate_kwargs=(; cutoff, maxdim, mindim),
kwargs...,
)
if hassameinds(siteinds, A, B)
Expand All @@ -837,13 +858,13 @@ function ITensors.contract(
N != length(B) &&
throw(DimensionMismatch("lengths of MPOs A ($N) and B ($(length(B))) do not match"))
# Special case for a single site
N == 1 && return MPO([A[1] * B[1]])
N == 1 && return typeof(B)([A[1] * B[1]])
A = orthogonalize(A, 1)
B = orthogonalize(B, 1)
A = sim(linkinds, A)
sA = siteinds(uniqueinds, A, B)
sB = siteinds(uniqueinds, B, A)
C = MPO(N)
C = typeof(B)(N)
lCᵢ = Index[]
R = ITensor(true)
for i in 1:(N - 2)
Expand Down Expand Up @@ -874,7 +895,7 @@ function ITensors.contract(
mindim,
kwargs...,
)
truncate!(C; kwargs...)
corbett5 marked this conversation as resolved.
Show resolved Hide resolved
truncate!(C; truncate_kwargs...)
return C
end

Expand Down Expand Up @@ -945,16 +966,16 @@ C = apply(A, B; alg="naive", truncate=false)
in general you should set a `cutoff` value.
- `maxdim::Int=maxlinkdim(A) * maxlinkdim(B))`: the maximal bond dimension of the results MPS.
- `mindim::Int=1`: the minimal bond dimension of the resulting MPS.
- `alg="zipup"`: Either `"zipup"` or `"naive"`. `"zipup"` contracts pairs of
site tensors and truncates with SVDs in a sweep across the sites, while `"naive"`
first contracts pairs of tensor exactly and then truncates at the end if `truncate=true`.
- `truncate=true`: Enable or disable truncation. If `truncate=false`, ignore
other truncation parameters like `cutoff` and `maxdim`. This is most relevant
for the `"naive"` version, if you just want to contract the tensors pairwise
exactly. This can be useful if you are contracting MPOs that have diverging
norms, such as MPOs originating from sums of local operators.
$(zipup_docstring(true))

See also [`apply`](@ref) for details about the arguments available.

$(Paeckel2019_citation_docstring())
"""

@doc """
Expand Down
24 changes: 13 additions & 11 deletions src/lib/ITensorMPS/test/base/test_mpo.jl
Original file line number Diff line number Diff line change
Expand Up @@ -240,22 +240,22 @@ end
@test_throws DimensionMismatch error_contract(phi, K, badpsi)
end

@testset "contract" begin
@testset "contract(::MPO, ::MPS)" for method in ["densitymatrix", "naive", "zipup"]
phi = random_mps(sites)
K = random_mpo(sites)
@test maxlinkdim(K) == 1
psi = random_mps(sites)
psi_out = contract(K, psi; maxdim=1)
psi_out = contract(K, psi; method, maxdim=1)
@test inner(phi', psi_out) ≈ inner(phi', K, psi)
psi_out = contract(psi, K; maxdim=1)
psi_out = contract(psi, K; method, maxdim=1)
@test inner(phi', psi_out) ≈ inner(phi', K, psi)
psi_out = psi * K
@test inner(phi', psi_out) ≈ inner(phi', K, psi)
@test_throws MethodError contract(K, psi; method="fakemethod")

badsites = [Index(2, "Site") for n in 1:(N + 1)]
badpsi = random_mps(badsites)
@test_throws DimensionMismatch contract(K, badpsi)
@test_throws DimensionMismatch contract(K, badpsi; method)

# make bigger random MPO...
for link_dim in 2:5
Expand Down Expand Up @@ -287,7 +287,9 @@ end
orthogonalize!(psi, 1; maxdim=link_dim)
orthogonalize!(K, 1; maxdim=link_dim)
orthogonalize!(phi, 1; normalize=true, maxdim=link_dim)
psi_out = contract(deepcopy(K), deepcopy(psi); maxdim=10 * link_dim, cutoff=0.0)
psi_out = contract(
deepcopy(K), deepcopy(psi); method, maxdim=10 * link_dim, cutoff=0.0
)
@test inner(phi', psi_out) ≈ inner(phi', K, psi)
end
end
Expand Down Expand Up @@ -354,14 +356,14 @@ end
@test maxlinkdim(H) ≤ maxlinkdim(H₁) + maxlinkdim(H₂)
end

@testset "contract(::MPO, ::MPO)" begin
@testset "contract(::MPO, ::MPO)" for alg in ["naive", "zipup"]
psi = random_mps(sites)
K = random_mpo(sites)
L = random_mpo(sites)
@test maxlinkdim(K) == 1
@test maxlinkdim(L) == 1
KL = contract(prime(K), L; maxdim=1)
psi_kl_out = contract(prime(K), contract(L, psi; maxdim=1); maxdim=1)
KL = contract(prime(K), L; alg, maxdim=1)
psi_kl_out = contract(prime(K), contract(L, psi; alg, maxdim=1); alg, maxdim=1)
@test inner(psi'', KL, psi) ≈ inner(psi'', psi_kl_out) atol = 5e-3

# where both K and L have differently labelled sites
Expand All @@ -373,15 +375,15 @@ end
replaceind!(K[ii], sites[ii]', othersitesk[ii])
replaceind!(L[ii], sites[ii]', othersitesl[ii])
end
KL = contract(K, L; maxdim=1)
KL = contract(K, L; alg, maxdim=1)
psik = random_mps(othersitesk)
psil = random_mps(othersitesl)
psi_kl_out = contract(K, contract(L, psil; maxdim=1); maxdim=1)
psi_kl_out = contract(K, contract(L, psil; alg, maxdim=1); alg, maxdim=1)
@test inner(psik, KL, psil) ≈ inner(psik, psi_kl_out) atol = 5e-3

badsites = [Index(2, "Site") for n in 1:(N + 1)]
badL = random_mpo(badsites)
@test_throws DimensionMismatch contract(K, badL)
@test_throws DimensionMismatch contract(K, badL; alg)
end

@testset "*(::MPO, ::MPO)" begin
Expand Down
Loading