Skip to content
This repository has been archived by the owner on Feb 2, 2024. It is now read-only.

Series combine #821

Open
wants to merge 21 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 10 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
57 changes: 40 additions & 17 deletions sdc/datatypes/hpat_pandas_series_functions.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,6 +45,7 @@
from numba.typed import List, Dict
from numba import prange
from numba.np.arraymath import get_isnan
from numba.core.registry import cpu_target
from pandas.core.indexing import IndexingError

import sdc
Expand All @@ -69,6 +70,7 @@
from sdc.functions import numpy_like
from sdc.hiframes.api import isna
from sdc.datatypes.hpat_pandas_groupby_functions import init_series_groupby
from sdc.utilities.prange_utils import parallel_chunks

from .pandas_series_functions import apply
from .pandas_series_functions import map as _map
Expand Down Expand Up @@ -4899,7 +4901,8 @@ def sdc_pandas_series_combine(self, other, func, fill_value=None):

Limitations
-----------
- Only supports the case when data in series of the same type
- Only supports the case when data in series of the same type.
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This line is not correct - impl handles all cases. For the next line we need exact definition of difference to pandas, e.g:

Suggested change
- Only supports the case when data in series of the same type.
- Resulting series dtype may be wider than in pandas due to type-stability requirements and depends on fill_value dtype and result of series indexes alignment.

- With the default fill_value parameter value, the type of the resulting series will be float.

Examples
--------
Expand All @@ -4917,10 +4920,9 @@ def sdc_pandas_series_combine(self, other, func, fill_value=None):
Pandas Series method :meth:`pandas.Series.combine` implementation.

.. only:: developer

Tests: python -m sdc.runtests -k sdc.tests.test_series.TestSeries.test_series_combine*
Test: python -m sdc.runtests -k sdc.tests.test_series.TestSeries.test_series_combine*
"""
_func_name = 'Method Series.combine().'
_func_name = 'Method Series.combine()'

ty_checker = TypeChecker(_func_name)
ty_checker.check(self, SeriesType)
Expand All @@ -4930,22 +4932,43 @@ def sdc_pandas_series_combine(self, other, func, fill_value=None):
if not isinstance(fill_value, (types.Omitted, types.NoneType, types.Number)) and fill_value is not None:
ty_checker.raise_exc(fill_value, 'number', 'fill_value')

fill_is_default = isinstance(fill_value, (types.Omitted, types.NoneType)) or fill_value is None

sig = func.get_call_type(cpu_target.typing_context, [self.dtype, other.dtype], {})
ret_type = sig.return_type

fill_dtype = types.float64 if fill_is_default else fill_value
res_dtype = find_common_dtype_from_numpy_dtypes([], [ret_type, fill_dtype])

def sdc_pandas_series_combine_impl(self, other, func, fill_value=None):

if fill_value is None:
fill_value = numpy.nan
if fill_value is not None:
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
if fill_value is not None:
_fill_value = numpy.nan if fill_value is None else fill_value:

_fill_value = fill_value
else:
_fill_value = numpy.nan

len_val = max(len(self), len(other))
result = numpy.empty(len_val, self._data.dtype)
for ind in range(len_val):
val_self = self._data[ind]
val_other = other._data[ind]
if len(self) < ind + 1:
val_self = fill_value
if len(other) < ind + 1:
val_other = fill_value
result[ind] = func(val_self, val_other)
indexes, self_indexes, other_indexes = sdc_join_series_indexes(self.index, other.index)
len_val = len(indexes)

return pandas.Series(result)
result = numpy.empty(len_val, res_dtype)

chunks = parallel_chunks(len_val)
for i in prange(len(chunks)):
chunk = chunks[i]
for j in range(chunk.start, chunk.stop):
self_idx = self_indexes[j]
if self_idx == -1:
val_self = _fill_value
else:
val_self = self[self_idx]._data[0]
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

self_idx (and other_idx) is position in the Series, not the index, so instead of using getitem on a Series, that performs index lookup and returns a Series, so that you have to take _data[0] from it, you can just write:

Suggested change
val_self = self[self_idx]._data[0]
val_self = self._data[self_idx]


other_idx = other_indexes[j]
if other_idx == -1:
val_other = _fill_value
else:
val_other = other[other_idx]._data[0]

result[j] = func(val_self, val_other)
return pandas.Series(result, index=indexes)

return sdc_pandas_series_combine_impl
11 changes: 5 additions & 6 deletions sdc/tests/test_series.py
Original file line number Diff line number Diff line change
Expand Up @@ -2781,27 +2781,23 @@ def test_impl(S1, S2):
np.float32(3), np.float32(4), np.float32(5)])
pd.testing.assert_series_equal(hpat_func(S1, S2), test_impl(S1, S2))

@skip_numba_jit
def test_series_combine_assert1(self):
def test_impl(S1, S2):
return S1.combine(S2, lambda a, b: 2 * a + b)
hpat_func = self.jit(test_impl)

S1 = pd.Series([1, 2, 3])
S2 = pd.Series([6., 21., 3., 5.])
with self.assertRaises(AssertionError):
hpat_func(S1, S2)
pd.testing.assert_series_equal(hpat_func(S1, S2), test_impl(S1, S2))
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

General comment for tests: not all combinations of input series dtypes and fill_value are tested e.g. the one I mentioned before - where float fill_value is assigned to otherwise int series. There are no tests with series with non-default indexes (we refer to samelen, but it's not fully correct - series may have same len, but not same indexes), and no tests for checking func impact on result dtype, so it's hard to see from such tests what's really tested and what is not. So the suggestion is to organize tests in a different manner:

  1. product of diff series dtypes (default int, int64, float64),
    same series indexes (but not same series sizes),
    fill_value is specified and of different dtypes (None, np.nan, 4, 4.2)
    Covers: test_series_combine_value_samelen
  2. product of diff series dtypes (default int, int64, float64),
    same series indexes (but not same series sizes),
    with fill_value is omitted
    Covers: test_series_combine_float3264, test_series_combine_integer_samelen, test_series_combine_samelen, test_series_combine_different_types
  3. product of diff series dtypes (default int, int64, float64),
    series indexes that align with and without -1 in indexers
    fill_value is specified and of different dtypes (None, np.nan, 4, 4.2)
    Covers: test_series_combine_integer, test_series_combine_value
  4. product of diff series dtypes (default int, int64, float64),
    series indexes that align with and without -1 in indexers
    fill_value is omitted
    Covers: test_series_combine, test_series_combine_assert1, test_series_combine_assert2, test_series_combine_different_types

New test:
5. (for testing func changes dtype properly)
product of diff series dtypes (default int, int64, float64),
same series indexes (but not same series sizes),
fill_value = 0
with diff functions (chaning and not chaning res dtype e.g. preserving int domain, e.g. ** and + and not, e.g. /)

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

For example, test 1 can look like this (it can also be split into two: one when we use check_dtype=False and one when we don't):

    def test_series_combine_same_index_fill_value(self):
        def test_impl(S1, S2):
            return S1.combine(S2, lambda a, b: 2 * a + b)
        hpat_func = self.jit(test_impl)

        n = 11
        np.random.seed(0)
        A = np.random.randint(-100, 100, n)
        B = np.arange(n) * 2 + 1
        series_index = 1 + np.arange(n)

        series_dtypes = [None, np.int64, np.float64]
        fill_values = [None, np.nan, 4, 4.2]
        for dtype1, dtype2, fill_value in product(series_dtypes, series_dtypes, fill_values):
            S1 = pd.Series(A, index=series_index, dtype=dtype1)
            S2 = pd.Series(B, index=series_index, dtype=dtype2)
            with self.subTest(S1_dtype=dtype1, S2_dtype=dtype2, fill_value=fill_value):
                result = hpat_func(S1, S2)
                result_ref = test_impl(S1, S2)
                # check_dtype=False due to difference to pandas in some cases
                pd.testing.assert_series_equal(result, result_ref, check_dtype=False)


@skip_numba_jit
def test_series_combine_assert2(self):
def test_impl(S1, S2):
return S1.combine(S2, lambda a, b: 2 * a + b)
hpat_func = self.jit(test_impl)

S1 = pd.Series([6., 21., 3., 5.])
S2 = pd.Series([1, 2, 3])
with self.assertRaises(AssertionError):
hpat_func(S1, S2)
pd.testing.assert_series_equal(hpat_func(S1, S2), test_impl(S1, S2))

def test_series_combine_integer(self):
def test_impl(S1, S2):
Expand All @@ -2821,7 +2817,10 @@ def test_impl(S1, S2):
S2 = pd.Series([1, 2, 3, 4, 5])
pd.testing.assert_series_equal(hpat_func(S1, S2), test_impl(S1, S2))

@unittest.expectedFailure
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Please add comment why the test is skipped.
@unittest.expectedFailure # ...

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@Rubtsowa No need to skip the test if that's how impl is intended to work. Use check_dtype=False in assert_series_equal and add a comment just before this check to refer to SDC Limitation.

def test_series_combine_integer_samelen(self):
"""Result series type `int` is expected,
`float` is returned since this is the default fill_value type"""
def test_impl(S1, S2):
return S1.combine(S2, lambda a, b: 2 * a + b)
hpat_func = self.jit(test_impl)
Expand Down