Skip to content

Commit

Permalink
add cudagraph.
Browse files Browse the repository at this point in the history
  • Loading branch information
Reinerzhou committed Jan 7, 2025
1 parent c6c25ae commit 3ff2962
Show file tree
Hide file tree
Showing 2 changed files with 311 additions and 0 deletions.
300 changes: 300 additions & 0 deletions lmdeploy/pytorch/backends/dlinfer/maca/graph_runner.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,300 @@
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Any, Dict, List, Tuple

import torch
from torch import Tensor

from lmdeploy.pytorch.config import BackendConfig, CacheConfig, ModelConfig
from lmdeploy.pytorch.model_inputs import StepContext
from lmdeploy.pytorch.models.utils.cudagraph import CudaGraphMeta
from lmdeploy.utils import get_logger

from ...graph_runner import GraphRunner

logger = get_logger('lmdeploy')

BuffType = Dict[str, Tensor]


def round_up_to_multiple_of_8(n: int):
return (n + 7) // 8 * 8


def _false(*args, **kwargs):
"""default value of not support cuda graph."""
return False


class MACASingleGraphRunner:
"""MACA single graph runner."""

def __init__(
self,
model: torch.nn.Module,
max_batches: int,
max_tokens: int,
num_blocks: int,
is_decoding: bool,
pool: Tuple[int, int],
device: torch.device,
):
self.model = model
self.ctx_mgr = model.ctx_mgr
self.meta = CudaGraphMeta(
max_batchs=max_batches,
max_tokens=max_tokens,
num_blocks=num_blocks,
is_decoding=is_decoding,
device=device,
input_buffers=dict(),
output_buffers=dict(),
)
self.device = device
self.max_batches = max_batches
self.max_tokens = max_tokens
self.num_blocks = num_blocks
self.is_decoding = is_decoding
self.pool = pool
self._graph: torch.cuda.CUDAGraph = None

def capture(self, **kwargs):
"""capture graph."""
self.meta.input_buffers = self.make_buffers_cudagraph(
self.meta, **kwargs)
padded_kwargs = self.fill_buffers_cudagraph(self.meta, **kwargs)
context = self.ctx_mgr.current_context()
self.update_context_cudagraph(self.meta, context)
current_stream = torch.cuda.current_stream()

output = self.model(**padded_kwargs)

# warmup
self._graph = torch.cuda.CUDAGraph()
# unsafe kernel call in other thread might invalid the capture
# so we set thread_safe capture mode here.
with torch.cuda.graph(self._graph,
pool=self.pool,
stream=current_stream,
capture_error_mode='thread_local'):
output = self.model(**padded_kwargs)

output_buffers = dict(logits=output)
self.meta.output_buffers = output_buffers
return output

def forward(self, **kwargs):
"""forward."""
num_tokens = kwargs['input_ids'].size(-1)
assert self._graph is not None
self.fill_buffers_cudagraph(self.meta, **kwargs)
context = self.ctx_mgr.current_context()
self.update_context_cudagraph(self.meta, context)

self._graph.replay()
output = self.meta.output_buffers['logits'][:, :num_tokens]
return output

def make_buffers_cudagraph(self, graph_meta: CudaGraphMeta, *args,
**kwargs) -> BuffType:
"""make cudagraph buffers from forward inputs."""
max_batches = graph_meta.max_batchs
max_tokens = graph_meta.max_tokens
num_blocks = graph_meta.num_blocks
device = graph_meta.device

input_buffers: BuffType = dict()
input_buffers['input_ids'] = torch.zeros(1,
max_tokens,
dtype=torch.int32,
device=device)
input_buffers['position_ids'] = torch.ones((1, max_tokens),
dtype=torch.int32,
device=device)

input_buffers['block_offsets'] = torch.zeros((max_batches, num_blocks),
dtype=torch.int32,
device=device)

input_buffers['q_start_loc'] = torch.arange(max_batches + 1,
dtype=torch.int32,
device=device)

input_buffers['q_seqlens'] = torch.ones(max_batches,
dtype=torch.int32,
device=device)

input_buffers['kv_seqlens'] = torch.ones(max_batches,
dtype=torch.int32,
device=device)

input_buffers['kv_start_indices'] = torch.ones((max_batches, 1),
dtype=torch.int64,
device=device)

input_buffers['local_adapter_ids'] = torch.zeros(max_batches,
dtype=torch.int32,
device=device)
return input_buffers

def fill_buffers_cudagraph(self, graph_meta: CudaGraphMeta,
input_ids: Tensor, position_ids: Tensor,
past_key_values: List, attn_metadata: Any,
inputs_embeds: Tensor,
**kwargs) -> Dict[str, Tensor]:
"""fill cudagraph buffers from forward inputs."""
is_decoding = graph_meta.is_decoding
block_offsets: Tensor = attn_metadata.block_offsets
q_start_loc: Tensor = attn_metadata.q_start_loc
q_seqlens: Tensor = attn_metadata.q_seqlens
kv_seqlens: Tensor = attn_metadata.kv_seqlens
kv_start_indices: Tensor = attn_metadata.kv_start_indices

input_buffers: BuffType = graph_meta.input_buffers

batch_size, num_blocks = block_offsets.size()
num_tokens = input_ids.size(-1)
q_start_loc_size = q_start_loc.size(0)

# fill buffer
input_buffers['input_ids'][:, :num_tokens] = input_ids
input_buffers['position_ids'][:, :num_tokens] = position_ids
input_buffers[
'block_offsets'][:batch_size, :num_blocks] = block_offsets
input_buffers['q_seqlens'][:batch_size] = q_seqlens
input_buffers['kv_seqlens'][:batch_size] = kv_seqlens

input_buffers['q_start_loc'][:q_start_loc_size] = q_start_loc
input_buffers['kv_start_indices'][:batch_size] = kv_start_indices

if inputs_embeds is not None:
emb_size = inputs_embeds.size(-1)
if 'inputs_embeds' not in input_buffers:
max_num_tokens = input_buffers['input_ids'].size(-1)
input_buffers['inputs_embeds'] = inputs_embeds.new_zeros(
1, max_num_tokens, emb_size)
input_buffers['inputs_embeds'][:, :num_tokens] = inputs_embeds

# create inputs
new_batch_size = round_up_to_multiple_of_8(batch_size)
q_start_loc_size = round_up_to_multiple_of_8(q_start_loc_size)

attn_metadata.block_offsets = input_buffers[
'block_offsets'][:new_batch_size]
attn_metadata.q_start_loc = input_buffers[
'q_start_loc'][:q_start_loc_size]
attn_metadata.q_seqlens = input_buffers['q_seqlens'][:new_batch_size]
attn_metadata.kv_seqlens = input_buffers['kv_seqlens'][:new_batch_size]
attn_metadata.kv_start_indices = input_buffers[
'kv_start_indices'][:new_batch_size]

new_inputs = dict(
past_key_values=past_key_values,
attn_metadata=attn_metadata,
)

if is_decoding:
new_inputs['input_ids'] = input_buffers[
'input_ids'][:, :new_batch_size]
new_inputs['position_ids'] = input_buffers[
'position_ids'][:, :new_batch_size]
else:
new_inputs['input_ids'] = input_buffers['input_ids']
new_inputs['position_ids'] = input_buffers['position_ids']

if inputs_embeds is not None:
if is_decoding:
new_inputs['inputs_embeds'] = input_buffers[
'inputs_embeds'][:, :new_batch_size]
else:
new_inputs['inputs_embeds'] = input_buffers['inputs_embeds']

new_inputs.update(kwargs)
return new_inputs

def update_context_cudagraph(self, graph_meta, context):
"""update step context with input buffers."""
input_buffers = graph_meta.input_buffers
context.q_seqlens = input_buffers['q_seqlens']
context.kv_seqlens = input_buffers['kv_seqlens']
context.q_start_loc = input_buffers['q_start_loc']
context.kv_start_indices = input_buffers['kv_start_indices']

def __del__(self):
"""del."""
del self._graph


class MACAGraphRunner(GraphRunner):
"""MACA graph runner."""

def __init__(self, model: torch.nn.Module, model_config: ModelConfig,
cache_config: CacheConfig, backend_config: BackendConfig,
device: torch.device):
super().__init__(model, model_config, cache_config, backend_config,
device)
self.max_batches = cache_config.max_batches
self.max_tokens = cache_config.max_prefill_token_num
self.num_blocks = cache_config.num_gpu_blocks

self.enable_graph = self.check_enable_graph()

self.graph_pool_handle = torch.cuda.graph_pool_handle()
self._runner_map: Dict[Any, MACASingleGraphRunner] = dict()

def check_enable_graph(self):
"""check enable graph."""
if self.backend_config.eager_mode:
return _false

return getattr(self.model, 'support_cuda_graph', _false)

def get_graph_key(self, input_ids: torch.Tensor,
position_ids: torch.Tensor, past_key_values: List,
attn_metadata: Any, inputs_embeds: torch.Tensor,
**kwargs):
"""get graph key."""
context = self.ctx_mgr.current_context()
is_decoding = context.is_decoding
num_tokens = input_ids.numel()
new_num_tokens = round_up_to_multiple_of_8(num_tokens)
return (new_num_tokens, is_decoding)

def __call__(self, **kwargs):
"""call."""
enable_graph = self.enable_graph(**kwargs)
graph_key = self.get_graph_key(**kwargs)
max_tokens = graph_key[0]
is_decoding = graph_key[1]

if (not enable_graph) or (not is_decoding):
return self.model(**kwargs)

if graph_key not in self._runner_map:
max_batches = max_tokens if is_decoding else self.max_batches
runner = MACASingleGraphRunner(self.model,
max_batches=max_batches,
max_tokens=max_tokens,
num_blocks=self.num_blocks,
is_decoding=is_decoding,
pool=self.graph_pool_handle,
device=self.device)
runner.capture(**kwargs)
self._runner_map[graph_key] = runner
else:
runner = self._runner_map[graph_key]

output = runner.forward(**kwargs)
return output

def prepare_inputs_for_generation(
self,
past_key_values: List[List[torch.Tensor]],
inputs_embeds: torch.Tensor = None,
context: StepContext = None,
):
"""prepare inputs."""
return self.model.prepare_inputs_for_generation(
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
context=context,
)
11 changes: 11 additions & 0 deletions lmdeploy/pytorch/backends/dlinfer/maca/op_backend.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@

import torch

from lmdeploy.pytorch.config import BackendConfig, CacheConfig, ModelConfig
from lmdeploy.utils import get_logger

from ..op_backend import DlinferOpsBackend
Expand Down Expand Up @@ -105,3 +106,13 @@ def get_total_slots():

step_context.attn_metadata = attn_metadata
return step_context

@staticmethod
def build_graph_runner(model: torch.nn.Module, model_config: ModelConfig,
cache_config: CacheConfig,
backend_config: BackendConfig,
device: torch.device):
"""build graph runner."""
from .graph_runner import MACAGraphRunner
return MACAGraphRunner(model, model_config, cache_config,
backend_config, device)

0 comments on commit 3ff2962

Please sign in to comment.