Skip to content

Intrusion Detection using various Data Mining Techniques (KDD Cup 1999 Data)

Notifications You must be signed in to change notification settings

JeevanSandhu/Intrusion-Detection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Intrusion-Detection

Intrusion Detection using various Data Mining Techniques (KDD Cup 1999 Data)

Dataset available on http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

Techniques Used:

  1. K Means (K=59)

    Accuracy 93.077 %

precision recall f1-score support
attack. 0.95 0.96 0.96 250436
normal. 0.83 0.80 0.82 60593
avg / total 0.93 0.93 0.93 311029
  1. Decision Trees

    Accuracy 92.956 %

precision recall f1-score support
attack. 1.0 0.91 0.95 250436
normal. 0.74 0.99 0.85 60593
avg / total 0.95 0.93 0.93 311029
  1. Multi-Level Perceptron

    Accuracy 92.388 %

precision recall f1-score support
attack. 0.99 0.91 0.95 250436
normal. 0.73 0.97 0.83 60593
avg / total 0.94 0.92 0.93 311029
  1. Random Forrest Classifier

    Accuracy 92.775 %

precision recall f1-score support
attack. 1.0 0.91 0.95 250436
normal. 0.73 0.99 0.84 60593
avg / total 0.95 0.93 0.93 311029
  1. K Neighbours

    Accuracy 92.469 %

precision recall f1-score support
attack. 1.0 0.91 0.95 250436
normal. 0.72 0.99 0.84 60593
avg / total 0.94 0.92 0.93 311029

About

Intrusion Detection using various Data Mining Techniques (KDD Cup 1999 Data)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published